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ABSTRACT 

In a federated Cloud environment, services may be composed of 

other services from different Clouds with different Cloud provider 

Quality-of-Service (QoS) guarantees. Providers running services 

on the multiple Clouds will be contractually obligated to meet or 

exceed the QoS which they have agreed to provide to their 

consumers.  A key challenge for the service providers will be to 

demonstrate compliance to the agreed upon QoS.   We present a 

basic mechanism to continuously measure QoS in a federated 

Cloud environment so that resources can be provisioned or de-

provisioned dynamically to meet Service Level Agreements. We 

have validated our mechanism by constructing prototypes and the 

results demonstrate that it is possible to continuously measure 

QoS at the minute granularity and for various service 

configurations prevalent in the industry. 
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1. INTRODUCTION 
A major obstacle in Cloud computing is performance 

unpredictability because providers are unable to foresee temporal 

variations in service demands and the geographical distribution of 

their consumers [1].  Furthermore, no single Cloud provider is 

able to establish infrastructure large enough to support the 

perception of unlimited computing resources of the Cloud 

computing paradigm. For example, Amazon EC2 customer has a 

limit of 20 Reserved Instances per Availability Zone that they can 

purchase each month [2].These limitations will necessitate Cloud 

providers to engage in agreements with other Cloud providers to 

complement their own capacity. Cloud federation facilitates 

dynamic expansion and contraction of application services across 

multiple Clouds to achieve QoS targets under variable workload 

and computing resources. Due to this dynamic nature of the Cloud 

federation, continuous monitoring on QoS attributes is necessary 

to enforce Service Level Agreements (SLAs).  We propose a basic 

mechanism for representing and measuring QoS of services across 

Cloud federations, accounting for various configurations such as 

single-point-of-failures, redundant services and planned down-

times. 

2. PROBLEM DESCRIPTION 
The typical enterprise environment consists of thousands of 

systems per customer supporting around hundred services per 

client [3]. Each service, in turn, is supported by a diverse 

collection of systems consisting of web-servers, VMs, databases, 

application servers, storage, networking etc. SLAs are not only 

defined for each service but also for each of its sub-systems and 

their components. Service providers are contractually obligated to 

demonstrate compliance at each level of the service tree by an 

audit trail of calculation chain. This task of measuring and 

demonstrating SLA compliance becomes even more complex in a 

Cloud federation environment where service resources may be 

dynamically provisioned and de-provisioned within and across 

Cloud boundaries to handle sudden variations in service demands 

[1].  

Existing techniques for measuring QoS usually employ 

centralized approaches to overall system monitoring and 

management. These centralized techniques are not an effective 

solution in a federation environment where live migration of 

virtual machines cross Cloud boundaries and challenges of auto-

scaling and elasticity arise from unpredictable service demands 

[4].   

To maximize cost-effectiveness and efficiency of composite 

systems it also becomes critical to allocate the optimal software 

and hardware configurations to ensure that QoS targets of services 

are achieved. This task of mapping services to resources becomes 

even more challenging in a Cloud federation model where   

expansion and resizing of provisioning capabilities are based on 

unforeseen spikes in workload demands in separate domains [4]. 

Enterprises with global operations will face difficulty in meeting 

QoS expectations for their entire user base because no single 

Cloud infrastructure provider has their data centers at all possible 

locations throughout the world. For example, Amazon has data 

centers in the US (e.g., one in the East Coast and another in the 

West Coast) and Europe. However, currently they expect their 

Cloud customers (i.e., SaaS providers) to express a preference 

about the location where they want their application services to be 

hosted [4].  As a result, Cloud providers would logically construct 
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federated Cloud infrastructure by mixing private and public 

Clouds.  

To meet aforementioned requirements, services need to be more 

SLA-aware to clearly identify the boundaries of SLA violations 

and responsibilities. Since the QoS attributes change constantly in 

a dynamic environment, measurement and monitoring of system 

performance is required for dynamic allocation of resources   in 

the changing environment of Cloud federation.  

3. VISION 
One of the biggest premises of Cloud computing is elastic scaling, 

which gives the users the perception of unlimited computing 

resources over the Internet. Cloud federation allows individual 

Cloud providers to engage in an agreement with other Cloud 

providers to enable elastic service composition which crosses 

Cloud boundaries [5]. Development of a basic mechanism to 

measure QoS is critical to complying with SLAs in a Cloud 

federation model where resource availability is uncertain. The 

most common QoS attributes which are part of SLA contracts are 

availability, response time and throughput   of services.  In a 

federated Cloud environment these metrics are constantly 

changing and they need to be monitored continuously to 

demonstrate compliance with the negotiated contracts.      

We describe a basic mechanism for representing and measuring 

QoS of composed services across Cloud federations.  We illustrate 

how this mechanism (Figures 1, 2, and 3) can measure ‘up-to-the-

minute’ QoS for both individual services and composite services 

under various service configurations, such as single point of 

failure, redundant services (multiple servicer replicas) and 

services with planned downtime. Finally, we provide an algorithm 

(Figure 4) which uses this mechanism to optimize dynamic 

resource allocation within various service configurations. 

4. REPRESENTATION  

Figure 1 represents the basic mechanism for representing and 

measuring QoS of composed services across federations.  
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Availability % up to  Nth minute =   (Total number of UP minutes)       * 100;

                                                               (N - Don’t Care minutes) 
                                                           
In this example, Availability % up to  10th minute  =  (6/8)*100 = 75%

                                   If     Calculated QoS    >=   Target QoS

                                   service has  Met QoS up to the Nth minute

Associated with each Cloud Service is a Day Object 
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Figure 1. Basic Representation and Mechanism. 

 

Associated with each service, is a Day object represented by an 

array consisting of 1440-minute objects representing each minute 

of a day (24 hours x 60 min = 1440). By default, each minute will 

be marked as ‘UP’ (or 1) minute.  When a service disruption 

occurs during a particular minute the minute will be marked as a 

‘DWN’ (or 0) minute.  Additionally, a mask will be applied 

(indicated as X in the figure) to represent those minutes during 

which the user does not care whether the service is up or down.   

Figures 1 and 2 demonstrate the calculation of availability metrics 

up to the 10th minute. As long as the measured QoS is greater than 

or equal to the target QoS, the service would have met its 

expected target up to that minute. QoS of the entire Service tree 

and each of its components can be measured by recursively 

traversing the tree in a depth-first manner as explained in section 

5. Also note how we assign a weight (W) vector to each minute to 

represent the component’s relative contribution to the QoS of the 

composite service (parent) relative to other services for that 

minute. In Section 4.2 we explain how this weight vector 

mechanism can be used to calculate different QoS metrics under 

different service configurations such as composite service, single-

points-of failures and services with redundancy built in. 

4.1 Measuring Composite Cloud Services QoS 

Figure 2 illustrates how the mechanism can be used to measure 

QoS attributes for composite services.  In a federated 

environment, a composite service, for example an online 

publishing service, may be composed of other services such as 

editing, advertising, searching and printing services.  
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*
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                                                     =  (7/10)*100 = 70%
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Figure 2. Continuous measurement of composite services. 

For the composite service to be available, all the constituent 

services need to be available at the same time. This mechanism 

uses the set operation INTERSECTION (as depicted in the figure) 

to determine those minutes for which the composite service is 

available. The array of 1440 minutes is stacked on top of each 

other as the services are composed in a bottoms-up approach. For 

services which are redundant (e.g. two printing services) the set 

operation UNION is used. 

4.2 Measuring Service Configurations QoS  

In a service tree, when a child node contains a single-point-of-

failure (e.g. the load balancer in clustered database system) the 



parent service will incur an outage for every minute this single 

point of failure is down. However, if there is some redundancy 

built in (e.g. the database servers in the cluster environment), an 

outage of one or two servers may not impact the service. In 

essence, each child node is weighted differently with regard to 

how it impacts its parent node. The QoS impact calculations, 

therefore, need to differentiate between single-point-of-failures 

and those with redundancy built in. Additionally, a service may 

also be defined as ‘impacted’ only when n out of m servers 

providing the service are impacted. For example, when 3 out of 

the 5 database server goes down, then the system may incur 

serious latency issues, but when 2 out of those same 5 servers are 

down, the system may run without any problem.  

 

Cloud Service A
and C are 
redundant

 

Cloud Service B
Single Point  of Failure

 

Cloud Service C

 

Composite Cloud 
Service D

Tolerance 
Threshold = 2

Weight = 2
Weight = 1

Weight = 1
Nth minute =  UP

Nth minute =  DWN
Nth minute =  UP

 Threshold  indicates the number of  atomic 

services which  have to be ‘down’ for the 

Composite to be ‘down’.

Each minute is assigned a weight W (integer) which represent its relative contribution to the 
availability of the composite  w.r.t to other atomic services.  

Figure 3. Use of Weight Vectors. 

To account for these various service configurations, each node is 

given a ‘weight’ which indicates its   criticality to the service it 

provides to its parent relative to other children. The parent is 

given a threshold tolerance level. This threshold tolerance 

indicates the level at which the parent service will incur an 

outage. The parent service will incur an outage when the sum of 

the weights of the children (incurring an outage) is greater or 

equal to this threshold tolerance of the parent.  

Single-point-of-failure: The weight of these components is 

assigned the same value as the tolerance threshold of its parent. In 

this figure, Cloud Service B is the single-point-of-failure and it 

will take the Cloud service D down when it goes down (weight = 

threshold tolerance of parent).  

Redundant services: Cloud service A and C are redundant 

services, so both of them have to be down for its parents to be 

down. Hence we assign weight such that the sum of their weight 

equals the tolerance threshold of its parent. Similarly, n out of m 

server configurations can also be accounted using this weight 

vector mechanism. 

Service Disruptions in a Cloud federation:   When service 

disruptions occur in a federated environment, it is necessary to 

accurately identify the offending cloud partition so that the other 

providers contributing to the same service are not penalized 

unduly.  Furthermore, these disruptions must also be classified 

according to cause of disruption. For example, when a disruption 

is caused by anomalies in a third-party application hosted by an 

infrastructure cloud provider, the provider of the cloud 

infrastructure should not bear its consequence. To accurately 

identify and classify these types of service disruptions we 

associate configurable business rules to each of the minute 

objects. This enables filtering out problem tickets at the minute 

granularity.    

QoS vary by cloud-partitions, providers and clients:  One key 

observation in a federation model is that the service providers 

have to serve much more diverse clients than traditional enterprise 

services usually do [9].   To optimize profit, providers will service 

multiple clients with differing QoS from the same service tree. 

Furthermore, QoS levels may change at each level of the service 

tree for the same client. For example, a database service may have 

to be contractually available 99% of the time, while each of the 

servers providing the database service may have to be available 

for 95% of the time, while the load balancer for the servers needs 

to be up 99% of the time.  To represent and measure QoS 

accurately, these threshold QoS metrics are stored in the day 

object (Figure 1) for each client and computations are carried out 

based on the information available in the service disruption for 

each client at each node in the SLA service tree.  

 Duplicate tickets elimination in a Cloud federation: Service 

disruption tickets can be created at device level, application level 

or at the service level. When SLAs are defined broadly at all these 

levels, often a secondary problem tickets are created to reflect the 

scenario more accurately. For example, the fact that a web service 

is down and one of the 2 servers supporting the service is down 

needs two distinct tickets to reflect reality [8]. In a federated 

environment where composite services are constructed from 

distinct cloud partitions, a mechanism needs to be in place so that 

providers are not penalized twice for the same outage.  To detect 

duplicate tickets for the same outages, we stack outage minute 

objects from the problem tickets to the day object tray at each 

node of the service tree. If there are multiple outage minute 

objects for the same minute slot, then a duplicate ticket has been 

detected and they are rejected and logged for further analysis and 

reporting.  

4.3 SLA-Based Provisioning Algorithm  

Figure 4 demonstrates an SLA based provisioning algorithm to 

allocate resources for various service configurations. For each 

service and its components, set an Upper Bound QoS and a Lower 

Bound QoS threshold both of which are greater than the agreed 

upon QoS for that specific Service.  

The range between the Lower Bound QoS and agreed QoS 

reflects a “near-breach” situation and alerts the provider of an 

impending violation of QoS. It reflects a service quality which has 

not yet violated the contractual QoS but it is close to breaching it. 

When the service quality falls below this lower bound, it provides 

an opportunity to add more resources or migrate the service to 

another cloud before a complete violation of QoS occurs.    

In practice, expected QoS targets can vary from one node to 

another within the same service-tree. Hence, accurate 

measurement of both the target QoS and the up-to-the-minute 

QoS are necessary for all nodes within the service tree. This 

mechanism of measuring   QoS continuously can be used to locate 

those services which are ‘near-breaches’ and based on the 



criticality of the system (single-point-of-failure, redundant etc.), 

additional resources can be provisioned dynamically to prevent 

SLA violations. As an example, for single-point-of-failure, as 

soon as the measured ‘up-to-the-minute’ QoS falls below the 

upper bound, live migration to another local resource or to 

another Cloud in the federation is initiated. For services with 

redundancy built-in, this may occur only when the measured QoS 

falls below the lower bound.  

For All Services in the Service Tree:

Set  Upper Bound QoS  > Lower Bound QoS  > Agreed 

QoS

Start

Is end-to-end QoS

 >= 

Upper Bound ? 

YES

End

NO

Single Point of Failure Redundant Service Planned Downtime

Traverse Service Tree to locate Service 

Disruption Object

End

 

Is measuered QoS  <= Upper Bound ? 

Is   QoS

< 

Lower Bound ? 

Migrate Service to another 

Local Resource or Federate 

resources from other 

providers

End

Replicate Service to another 

Local Resource or Federate 

resources from other 

providers

YES

End

 

 

Figure 4. Algorithm for resource allocation, based on ‘up-to-

the-minute’ QoS measurement of different service 

configurations. 

Our assumption is that different cloud providers will either 

provide access to measure the service quality at each node or 

implement this technique at each node in their service tree.  In 

order to speed-up processing, service quality at each node is pre-

computed with the assumption that a service quality has met the 

contractual level unless a service disruption occurs. Only when a 

service disruption occurs, QoS computation is carried out using 

the representation described in Figure 1. In the software 

implementation, each minute is represented as an object which is 

capable of computing its own QoS value (e.g. availability 

percentage) based on several QoS attributes like down-time 

minutes, up-time minutes, caused-by field, scheduled/unscheduled 

outage etc. 

‘Up-to-the-minute’ QoS measurement may not only prevent SLA 

violations but also optimize resource allocation by provisioning 

resources only when it is needed. 

5.  EXPERIMENTS 
A prototype design was constructed and implemented to validate 

whether the mechanisms will hold up to various service 

configurations. The experiments were conducted on an HP server 

having the following configuration: 3.59 GHz with 4 GB of RAM 

running a standard Windows 2003 Server Standard Edition, 

Service Pack 2. The prototype environment was developed in C#, 

.NET 4.0 frameworks and the underlying database was SQL 

server 2008 in a load-balanced mode. 
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Figure 5. Recursive QoS calculation up/down the service tree. 

The experiment was modeled after a real-world SLA service tree 

for a customer of Hewlett-Packard. The service tree (see Figure 5) 

consisted of 848 nodes where each node represented a server or a 

service. The typical service tree has the physical components 

(servers, network, and router) towards the leaf of the tree structure 

while the root represented the composite service. Each of the 

intermediate nodes represented a sub-system or a service which 

support the composite service at the root. 

Associated with each node is the day object which is represented 

by an array of 1440 minutes objects to calculate up-to-the-minute 

QoS at every node. Starting at the root of the tree, the composite 

service calculates its QoS in a recursive manner based on the QoS 

of its children. Multiple Calculator Objects can be attached to a 

single node to compute different types of QoS at each node. The 

experiment was set up with single-point-of-failure and redundant 

services at different levels. While the computation logic was 

constructed at the application layer, the cumulative computation 

(up-to-the-minute) was done using stored procedure at the 

persistence layer to speed-up calculation. 

The software program was run for each day for the month of June. 

The total number of tasks calculated was 1635 per day, since 

some nodes had multiple calculators associated with it. The task 

took 1.58 minutes to complete on one CPU. The results reveal 

that the software representation was able to make accurate 

calculation of the QoS for every minute for availability metrics at 

each node of the service tree. There were a total of 13 service 



disruptions during the month of June and the software was able to 

compute the QoS in terms of availability percentage accurately. 
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Figure 6. Weight Vectors Representing Service Configuration. 

Figure 6 reveals actual calculations of SLA availability metrics for 

a customer of HP. There were two outages on the same day, one 

on a single-point-of-failure (left node) and one on a redundant 

server (right node). Since, two nodes on the right are redundant 

both of them have to incur an outage for the parent to be down. 

This is achieved by assigning weights to each of them such that 

their sum of the weight vectors equals the threshold tolerance of 

the parent. In this case, even though one of the redundant 

components was down for 3 hours, the parent was up because the 

sum of their weight of the down minutes is still less than threshold 

of parent.   Also note, how the node on the left is a single-point-

of-failure and its weight vector equals that of parents. Hence, the 

outage of 23 minutes it incurred was cascaded up to its parents.  

5.1 Scaling-up in a Single-Datacenter 

Experimental Setup: The setup is modeled after one of HP’s 

clients in the travel and hospitality industry, whose assets are 

located in the Tulsa datacenters. The goal of the experiment was 

to find out if the measurement mechanism can scale-up when the 

number of nodes increases within an SLA service tree. The size of 

the service tree was steadily increased from 100 to 1200 and QoS 

computational time was recorded for each day, month-to-date, and 

year-to-date. The calculations were carried out for each minute for 

each day for a period of one month. The number of service 

disruptions during the same period was 19. 

Results:  The results reveal that the software representation of the 

mechanism scaled-up well when the size of the service tree was 

steadily increased. Figure 7 depicts a graph where the X axis 

represents the varying number of nodes in the service tree and the 

Y-axis represents the time it took to calculate up-time availability 

for a period of one month for the entire service tree. The result of 

the experiments also demonstrated that the computational time 

depended on the number of service disruptions for the period of 

measurement. This dependency can be explained by noting that 

the impact of the service disruption at any node needed to be 

cascaded up the service tree to calculate its impact on the end-to-

end QoS.  
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Figure 7. Measurements in a Single Datacenter. 

5.2 Scaling-up in a Cloud Federation   

Experimental Setup: Cloud partitions were simulated by carving 

out distinct computational environments within two 

geographically separate datacenters.  The goal of the experiment is 

to find out if the measurement mechanism can also scale up in a 

cloud federation environment when the number of cloud partitions 

was increased.  A service tree was modeled after one of HP’s 

clients in the Transportation Industry whose assets are located in 

the Tulsa Datacenters. The size of the service tree was maintained 

fixed at 1200 nodes but they were equally distributed among each 

of the datacenter partitions.  The number of partitions was varied 

from 1 to 8 and the QoS measurement software was run in each 

partition while sharing a single load-balanced database for storing 

results.  

Results: The results of the simulation reveal that the software 

calculated the SLA performance metrics successfully in a   

federated environment. Figure 8 depicts a graph where the X axis 

represents the number of cloud partitions and the Y-axis 

represents the time it took to calculate the up-time availability for 

a period of one month for the entire service tree. As the number of 

cloud federations were increased the computational time increased 

linearly, which can be attributed to the fragmentation of service 

tree amongst different cloud partitions. The calculation results 

revealed that this measurement technique scaled up in a 

distributed environment as well.  In the future, we intend to carry 

out this measurement technique in a real cloud federation where 

live migration of VM’s and dynamic resource allocations can take 

place.  
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Figure 8. Measurements in a Cloud federation environment. 

6. CONCLUSION AND FUTURE WORK 

We presented a basic mechanism for representing and measuring 

QoS continuously for both individual service and composite 

services. The same mechanism can be used to represent and 

measure different QoS metrics such as availability, response time, 

throughput in a continuous manner in a Cloud federation. 

Development of this basic mechanism is critical to enabling 

elastic service composition in a Cloud federation model where 

resource availability is uncertain. We believe that the proposed 

measurement techniques will not only help in effective allocation 

of Cloud resources to satisfy QoS targets but also lower 

operational cost by enabling optimal resource pooling and surplus 

re-distribution in the highly dynamic federation model. Due to 

mounting concerns of trust and privacy, the task of measuring and 

demonstrating SLA compliance may be ultimately delegated to 

third-parties [7], who may adopt this clear and simple mechanism 

as a uniform standard of measurement.    

In our future work, we shall examine how this continuous QoS 

measurement technique may prevent costly SLA violations by 

making services ‘QoS-aware’ so that autonomic resource 

management can occur in the changing environment of a Cloud 

federation. 
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