
A Mechanism to Measure Quality-of-Service

in a Federated Cloud Environment
Shoumen Bardhan

Hewlett-Packard Enterprise Services
4000 N Mingo Road

Tulsa, OK 74116
918.625.1833

shoumen.bardhan@hp.com

Dejan Milojicic
Hewlett-Packard Labs

 1501 Page Mill Rd
Palo Alto, CA 94304

650.236.2906

 dejan.milojicic@hp.com

ABSTRACT

In a federated Cloud environment, services may be composed of

other services from different Clouds with different Cloud provider

Quality-of-Service (QoS) guarantees. Providers running services

on the multiple Clouds will be contractually obligated to meet or

exceed the QoS which they have agreed to provide to their

consumers. A key challenge for the service providers will be to

demonstrate compliance to the agreed upon QoS. We present a

basic mechanism to continuously measure QoS in a federated

Cloud environment so that resources can be provisioned or de-

provisioned dynamically to meet Service Level Agreements. We

have validated our mechanism by constructing prototypes and the

results demonstrate that it is possible to continuously measure

QoS at the minute granularity and for various service

configurations prevalent in the industry.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement Techniques

General Terms

Measurement, Performance, Design, Standardization

Keywords

Quality-of-Service, Service Level Agreements, Cloud Federation

1. INTRODUCTION
A major obstacle in Cloud computing is performance

unpredictability because providers are unable to foresee temporal

variations in service demands and the geographical distribution of

their consumers [1]. Furthermore, no single Cloud provider is

able to establish infrastructure large enough to support the

perception of unlimited computing resources of the Cloud

computing paradigm. For example, Amazon EC2 customer has a

limit of 20 Reserved Instances per Availability Zone that they can

purchase each month [2].These limitations will necessitate Cloud

providers to engage in agreements with other Cloud providers to

complement their own capacity. Cloud federation facilitates

dynamic expansion and contraction of application services across

multiple Clouds to achieve QoS targets under variable workload

and computing resources. Due to this dynamic nature of the Cloud

federation, continuous monitoring on QoS attributes is necessary

to enforce Service Level Agreements (SLAs). We propose a basic

mechanism for representing and measuring QoS of services across

Cloud federations, accounting for various configurations such as

single-point-of-failures, redundant services and planned down-

times.

2. PROBLEM DESCRIPTION
The typical enterprise environment consists of thousands of

systems per customer supporting around hundred services per

client [3]. Each service, in turn, is supported by a diverse

collection of systems consisting of web-servers, VMs, databases,

application servers, storage, networking etc. SLAs are not only

defined for each service but also for each of its sub-systems and

their components. Service providers are contractually obligated to

demonstrate compliance at each level of the service tree by an

audit trail of calculation chain. This task of measuring and

demonstrating SLA compliance becomes even more complex in a

Cloud federation environment where service resources may be

dynamically provisioned and de-provisioned within and across

Cloud boundaries to handle sudden variations in service demands

[1].

Existing techniques for measuring QoS usually employ

centralized approaches to overall system monitoring and

management. These centralized techniques are not an effective

solution in a federation environment where live migration of

virtual machines cross Cloud boundaries and challenges of auto-

scaling and elasticity arise from unpredictable service demands

[4].

To maximize cost-effectiveness and efficiency of composite

systems it also becomes critical to allocate the optimal software

and hardware configurations to ensure that QoS targets of services

are achieved. This task of mapping services to resources becomes

even more challenging in a Cloud federation model where

expansion and resizing of provisioning capabilities are based on

unforeseen spikes in workload demands in separate domains [4].

Enterprises with global operations will face difficulty in meeting

QoS expectations for their entire user base because no single

Cloud infrastructure provider has their data centers at all possible

locations throughout the world. For example, Amazon has data

centers in the US (e.g., one in the East Coast and another in the

West Coast) and Europe. However, currently they expect their

Cloud customers (i.e., SaaS providers) to express a preference

about the location where they want their application services to be

hosted [4]. As a result, Cloud providers would logically construct

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Workshop on Cloud

Services, Federation, and the 8th Open Cirrus Summit, September 21,

2012, San Jose, CA, USA. Copyright 2012 ACM 978-1-4503-1267-

7…$10.00.

federated Cloud infrastructure by mixing private and public

Clouds.

To meet aforementioned requirements, services need to be more

SLA-aware to clearly identify the boundaries of SLA violations

and responsibilities. Since the QoS attributes change constantly in

a dynamic environment, measurement and monitoring of system

performance is required for dynamic allocation of resources in

the changing environment of Cloud federation.

3. VISION
One of the biggest premises of Cloud computing is elastic scaling,

which gives the users the perception of unlimited computing

resources over the Internet. Cloud federation allows individual

Cloud providers to engage in an agreement with other Cloud

providers to enable elastic service composition which crosses

Cloud boundaries [5]. Development of a basic mechanism to

measure QoS is critical to complying with SLAs in a Cloud

federation model where resource availability is uncertain. The

most common QoS attributes which are part of SLA contracts are

availability, response time and throughput of services. In a

federated Cloud environment these metrics are constantly

changing and they need to be monitored continuously to

demonstrate compliance with the negotiated contracts.

We describe a basic mechanism for representing and measuring

QoS of composed services across Cloud federations. We illustrate

how this mechanism (Figures 1, 2, and 3) can measure ‘up-to-the-

minute’ QoS for both individual services and composite services

under various service configurations, such as single point of

failure, redundant services (multiple servicer replicas) and

services with planned downtime. Finally, we provide an algorithm

(Figure 4) which uses this mechanism to optimize dynamic

resource allocation within various service configurations.

4. REPRESENTATION

Figure 1 represents the basic mechanism for representing and

measuring QoS of composed services across federations.

Cloud Service A

UP UP UP UP UP UP UPDWN DWN X X W

Availability % up to Nth minute = (Total number of UP minutes) * 100;

 (N - Don’t Care minutes)

In this example, Availability % up to 10th minute = (6/8)*100 = 75%

 If Calculated QoS >= Target QoS

 service has Met QoS up to the Nth minute

Associated with each Cloud Service is a Day Object

with 1440 slots where each slot represent 1 minute of a

day. (24 hrs. X 60 min = 1440 min)

UP X

UP = Service is UP for this minute

DWN = Service is Down for this minute

Masked minutes represents don’t care states

Figure 1. Basic Representation and Mechanism.

Associated with each service, is a Day object represented by an

array consisting of 1440-minute objects representing each minute

of a day (24 hours x 60 min = 1440). By default, each minute will

be marked as ‘UP’ (or 1) minute. When a service disruption

occurs during a particular minute the minute will be marked as a

‘DWN’ (or 0) minute. Additionally, a mask will be applied

(indicated as X in the figure) to represent those minutes during

which the user does not care whether the service is up or down.

Figures 1 and 2 demonstrate the calculation of availability metrics

up to the 10th minute. As long as the measured QoS is greater than

or equal to the target QoS, the service would have met its

expected target up to that minute. QoS of the entire Service tree

and each of its components can be measured by recursively

traversing the tree in a depth-first manner as explained in section

5. Also note how we assign a weight (W) vector to each minute to

represent the component’s relative contribution to the QoS of the

composite service (parent) relative to other services for that

minute. In Section 4.2 we explain how this weight vector

mechanism can be used to calculate different QoS metrics under

different service configurations such as composite service, single-

points-of failures and services with redundancy built in.

4.1 Measuring Composite Cloud Services QoS

Figure 2 illustrates how the mechanism can be used to measure

QoS attributes for composite services. In a federated

environment, a composite service, for example an online

publishing service, may be composed of other services such as

editing, advertising, searching and printing services.

UP UP UP UP UP DWN DWN

Cloud Service A

Availability of the Composite Service C up to Nth minute

 = (INTERSECTION
*
 of UP minutes / N) * 100;

 = (7/10)*100 = 70%
*
 INTERSECTION operation represents the UP minutes which belong to both Service A and to

 Service B.
 If Calculated QoS >= Target QoS
 service has Met QoS up to the Nth minute.

UP UP UP

Cloud Service B

Composite Cloud
Service C

UP UP UP UP

DWN DWN

UP UP UPDWN

Figure 2. Continuous measurement of composite services.

For the composite service to be available, all the constituent

services need to be available at the same time. This mechanism

uses the set operation INTERSECTION (as depicted in the figure)

to determine those minutes for which the composite service is

available. The array of 1440 minutes is stacked on top of each

other as the services are composed in a bottoms-up approach. For

services which are redundant (e.g. two printing services) the set

operation UNION is used.

4.2 Measuring Service Configurations QoS

In a service tree, when a child node contains a single-point-of-

failure (e.g. the load balancer in clustered database system) the

parent service will incur an outage for every minute this single

point of failure is down. However, if there is some redundancy

built in (e.g. the database servers in the cluster environment), an

outage of one or two servers may not impact the service. In

essence, each child node is weighted differently with regard to

how it impacts its parent node. The QoS impact calculations,

therefore, need to differentiate between single-point-of-failures

and those with redundancy built in. Additionally, a service may

also be defined as ‘impacted’ only when n out of m servers

providing the service are impacted. For example, when 3 out of

the 5 database server goes down, then the system may incur

serious latency issues, but when 2 out of those same 5 servers are

down, the system may run without any problem.

Cloud Service A
and C are
redundant

Cloud Service B
Single Point of Failure

Cloud Service C

Composite Cloud
Service D

Tolerance
Threshold = 2

Weight = 2
Weight = 1

Weight = 1
Nth minute = UP

Nth minute = DWN
Nth minute = UP

 Threshold indicates the number of atomic

services which have to be ‘down’ for the

Composite to be ‘down’.

Each minute is assigned a weight W (integer) which represent its relative contribution to the
availability of the composite w.r.t to other atomic services.

Figure 3. Use of Weight Vectors.

To account for these various service configurations, each node is

given a ‘weight’ which indicates its criticality to the service it

provides to its parent relative to other children. The parent is

given a threshold tolerance level. This threshold tolerance

indicates the level at which the parent service will incur an

outage. The parent service will incur an outage when the sum of

the weights of the children (incurring an outage) is greater or

equal to this threshold tolerance of the parent.

Single-point-of-failure: The weight of these components is

assigned the same value as the tolerance threshold of its parent. In

this figure, Cloud Service B is the single-point-of-failure and it

will take the Cloud service D down when it goes down (weight =

threshold tolerance of parent).

Redundant services: Cloud service A and C are redundant

services, so both of them have to be down for its parents to be

down. Hence we assign weight such that the sum of their weight

equals the tolerance threshold of its parent. Similarly, n out of m

server configurations can also be accounted using this weight

vector mechanism.

Service Disruptions in a Cloud federation: When service

disruptions occur in a federated environment, it is necessary to

accurately identify the offending cloud partition so that the other

providers contributing to the same service are not penalized

unduly. Furthermore, these disruptions must also be classified

according to cause of disruption. For example, when a disruption

is caused by anomalies in a third-party application hosted by an

infrastructure cloud provider, the provider of the cloud

infrastructure should not bear its consequence. To accurately

identify and classify these types of service disruptions we

associate configurable business rules to each of the minute

objects. This enables filtering out problem tickets at the minute

granularity.

QoS vary by cloud-partitions, providers and clients: One key

observation in a federation model is that the service providers

have to serve much more diverse clients than traditional enterprise

services usually do [9]. To optimize profit, providers will service

multiple clients with differing QoS from the same service tree.

Furthermore, QoS levels may change at each level of the service

tree for the same client. For example, a database service may have

to be contractually available 99% of the time, while each of the

servers providing the database service may have to be available

for 95% of the time, while the load balancer for the servers needs

to be up 99% of the time. To represent and measure QoS

accurately, these threshold QoS metrics are stored in the day

object (Figure 1) for each client and computations are carried out

based on the information available in the service disruption for

each client at each node in the SLA service tree.

 Duplicate tickets elimination in a Cloud federation: Service

disruption tickets can be created at device level, application level

or at the service level. When SLAs are defined broadly at all these

levels, often a secondary problem tickets are created to reflect the

scenario more accurately. For example, the fact that a web service

is down and one of the 2 servers supporting the service is down

needs two distinct tickets to reflect reality [8]. In a federated

environment where composite services are constructed from

distinct cloud partitions, a mechanism needs to be in place so that

providers are not penalized twice for the same outage. To detect

duplicate tickets for the same outages, we stack outage minute

objects from the problem tickets to the day object tray at each

node of the service tree. If there are multiple outage minute

objects for the same minute slot, then a duplicate ticket has been

detected and they are rejected and logged for further analysis and

reporting.

4.3 SLA-Based Provisioning Algorithm

Figure 4 demonstrates an SLA based provisioning algorithm to

allocate resources for various service configurations. For each

service and its components, set an Upper Bound QoS and a Lower

Bound QoS threshold both of which are greater than the agreed

upon QoS for that specific Service.

The range between the Lower Bound QoS and agreed QoS

reflects a “near-breach” situation and alerts the provider of an

impending violation of QoS. It reflects a service quality which has

not yet violated the contractual QoS but it is close to breaching it.

When the service quality falls below this lower bound, it provides

an opportunity to add more resources or migrate the service to

another cloud before a complete violation of QoS occurs.

In practice, expected QoS targets can vary from one node to

another within the same service-tree. Hence, accurate

measurement of both the target QoS and the up-to-the-minute

QoS are necessary for all nodes within the service tree. This

mechanism of measuring QoS continuously can be used to locate

those services which are ‘near-breaches’ and based on the

criticality of the system (single-point-of-failure, redundant etc.),

additional resources can be provisioned dynamically to prevent

SLA violations. As an example, for single-point-of-failure, as

soon as the measured ‘up-to-the-minute’ QoS falls below the

upper bound, live migration to another local resource or to

another Cloud in the federation is initiated. For services with

redundancy built-in, this may occur only when the measured QoS

falls below the lower bound.

For All Services in the Service Tree:

Set Upper Bound QoS > Lower Bound QoS > Agreed

QoS

Start

Is end-to-end QoS

 >=

Upper Bound ?

YES

End

NO

Single Point of Failure Redundant Service Planned Downtime

Traverse Service Tree to locate Service

Disruption Object

End

Is measuered QoS <= Upper Bound ?

Is QoS

<

Lower Bound ?

Migrate Service to another

Local Resource or Federate

resources from other

providers

End

Replicate Service to another

Local Resource or Federate

resources from other

providers

YES

End

Figure 4. Algorithm for resource allocation, based on ‘up-to-

the-minute’ QoS measurement of different service

configurations.

Our assumption is that different cloud providers will either

provide access to measure the service quality at each node or

implement this technique at each node in their service tree. In

order to speed-up processing, service quality at each node is pre-

computed with the assumption that a service quality has met the

contractual level unless a service disruption occurs. Only when a

service disruption occurs, QoS computation is carried out using

the representation described in Figure 1. In the software

implementation, each minute is represented as an object which is

capable of computing its own QoS value (e.g. availability

percentage) based on several QoS attributes like down-time

minutes, up-time minutes, caused-by field, scheduled/unscheduled

outage etc.

‘Up-to-the-minute’ QoS measurement may not only prevent SLA

violations but also optimize resource allocation by provisioning

resources only when it is needed.

5. EXPERIMENTS
A prototype design was constructed and implemented to validate

whether the mechanisms will hold up to various service

configurations. The experiments were conducted on an HP server

having the following configuration: 3.59 GHz with 4 GB of RAM

running a standard Windows 2003 Server Standard Edition,

Service Pack 2. The prototype environment was developed in C#,

.NET 4.0 frameworks and the underlying database was SQL

server 2008 in a load-balanced mode.

Multiple Calculators can be attached
to a single node

Composite Service

QoS Calculator - Availability
QoS Calculator - Response Time

QoS Calculator - Throughput

Recursive QoS Calculation

Other Calculators

W
ha

t i
s
yo

ur
 Q

oS
 ?

W
ha

t i
s
yo

ur
 Q

oS
 ?

Calculate Qos()

Component or
Atomic Service

Re
po

rt
 m

y
 Q

oS

Re
po

rt
 m

y
 Q

oS

A Day Object is associated with each node

Report m
y Q

oS

W
hat is your Q

oS ?

Composite Service

R
e

p
o

rt
 m

y

Q

o
S

Calculate Qos()

Calculate Qos()Calculate Qos()

Figure 5. Recursive QoS calculation up/down the service tree.

The experiment was modeled after a real-world SLA service tree

for a customer of Hewlett-Packard. The service tree (see Figure 5)

consisted of 848 nodes where each node represented a server or a

service. The typical service tree has the physical components

(servers, network, and router) towards the leaf of the tree structure

while the root represented the composite service. Each of the

intermediate nodes represented a sub-system or a service which

support the composite service at the root.

Associated with each node is the day object which is represented

by an array of 1440 minutes objects to calculate up-to-the-minute

QoS at every node. Starting at the root of the tree, the composite

service calculates its QoS in a recursive manner based on the QoS

of its children. Multiple Calculator Objects can be attached to a

single node to compute different types of QoS at each node. The

experiment was set up with single-point-of-failure and redundant

services at different levels. While the computation logic was

constructed at the application layer, the cumulative computation

(up-to-the-minute) was done using stored procedure at the

persistence layer to speed-up calculation.

The software program was run for each day for the month of June.

The total number of tasks calculated was 1635 per day, since

some nodes had multiple calculators associated with it. The task

took 1.58 minutes to complete on one CPU. The results reveal

that the software representation was able to make accurate

calculation of the QoS for every minute for availability metrics at

each node of the service tree. There were a total of 13 service

disruptions during the month of June and the software was able to

compute the QoS in terms of availability percentage accurately.

Single-point-of-failure and Redundancy

AEMT10001
Aura Oracle

Name Server

For redundant Services,
Sum of the weight vectors =

threshold of parent

Calculation Parameters and Measurements

Calculator Type: Composite (Type 2)
Start Date: 5/1/2005
End Date: -
Threshold Tolerance: 1
Weight: 1
Formula Name: Standard
Asset Name: AEMT10001 (CIAID=5413)

Daily Threshold - Red: < 92.4562
Monthly Threshold - Red: < 91.9827
Yearly Threshold - Red: < 90.7044
Daily Threshold - Yellow: < 95.7132
Monthly Threshold - Yellow: < 94.3397
Yearly Threshold - Yellow: < 93.6869
Daily Calculation Value: 98.40 *
Daily Outage Minutes: 23
Daily Uptime Minutes: 1417
Daily Base Minutes: 1440
Monthly Calculation Value: 99.9242 *
Yearly Calculation Value: 99.9820 *

Service Disruption Information:

Outage Ticket Number: 100-02-9839263

Asset: AEMT10001 Aura Oracle Name Server

Outage Type: OUTAGE/UN (UNSCHEDULED)

Caused By: EDS (INTERNAL)

Event Start: 7/1/2012 3:20:37 PM

Event End : 7/1/2012 3:43:25 PM

AEMT10001
BOW CLIENT1

AEMT10001
Threshold = 2

W
eight V

ector =
2

AEMT10001
BOWCLIENT2

Weight Vector = 1

For Single point of failure,
Weight Vector = Threshold of

parent

Redundant Services
Single-point-of-Failure

Weight Vector =1

Service Disruption Information:

Outage Ticket Number: 100-02-10418189

Asset: AEMT10001 BOWCLIENT2

Impact Type: OUTAGE/UN (UNSCHEDULED)

Caused By: EDS (INTERNAL)

Event Start 7/1/2012 7:00:00 AM

Event End 7/1/2012 10:00:00 AM

Figure 6. Weight Vectors Representing Service Configuration.

Figure 6 reveals actual calculations of SLA availability metrics for

a customer of HP. There were two outages on the same day, one

on a single-point-of-failure (left node) and one on a redundant

server (right node). Since, two nodes on the right are redundant

both of them have to incur an outage for the parent to be down.

This is achieved by assigning weights to each of them such that

their sum of the weight vectors equals the threshold tolerance of

the parent. In this case, even though one of the redundant

components was down for 3 hours, the parent was up because the

sum of their weight of the down minutes is still less than threshold

of parent. Also note, how the node on the left is a single-point-

of-failure and its weight vector equals that of parents. Hence, the

outage of 23 minutes it incurred was cascaded up to its parents.

5.1 Scaling-up in a Single-Datacenter

Experimental Setup: The setup is modeled after one of HP’s

clients in the travel and hospitality industry, whose assets are

located in the Tulsa datacenters. The goal of the experiment was

to find out if the measurement mechanism can scale-up when the

number of nodes increases within an SLA service tree. The size of

the service tree was steadily increased from 100 to 1200 and QoS

computational time was recorded for each day, month-to-date, and

year-to-date. The calculations were carried out for each minute for

each day for a period of one month. The number of service

disruptions during the same period was 19.

Results: The results reveal that the software representation of the

mechanism scaled-up well when the size of the service tree was

steadily increased. Figure 7 depicts a graph where the X axis

represents the varying number of nodes in the service tree and the

Y-axis represents the time it took to calculate up-time availability

for a period of one month for the entire service tree. The result of

the experiments also demonstrated that the computational time

depended on the number of service disruptions for the period of

measurement. This dependency can be explained by noting that

the impact of the service disruption at any node needed to be

cascaded up the service tree to calculate its impact on the end-to-

end QoS.

Number of Nodes in the Service Tree
(In a Single DataCenter)

T
im

e
 t

o
 M

e
a

su
re

 Q
o

S
 (

in
 m

in
s)

0.5
0.68

0.93
1.12

1.29

1.68

1.98
2.1

2.25 2.28 2.3

0

0.5

1

1.5

2

2.5

100 200 300 400 500 600 700 800 900 1000 1200

Figure 7. Measurements in a Single Datacenter.

5.2 Scaling-up in a Cloud Federation

Experimental Setup: Cloud partitions were simulated by carving

out distinct computational environments within two

geographically separate datacenters. The goal of the experiment is

to find out if the measurement mechanism can also scale up in a

cloud federation environment when the number of cloud partitions

was increased. A service tree was modeled after one of HP’s

clients in the Transportation Industry whose assets are located in

the Tulsa Datacenters. The size of the service tree was maintained

fixed at 1200 nodes but they were equally distributed among each

of the datacenter partitions. The number of partitions was varied

from 1 to 8 and the QoS measurement software was run in each

partition while sharing a single load-balanced database for storing

results.

Results: The results of the simulation reveal that the software

calculated the SLA performance metrics successfully in a

federated environment. Figure 8 depicts a graph where the X axis

represents the number of cloud partitions and the Y-axis

represents the time it took to calculate the up-time availability for

a period of one month for the entire service tree. As the number of

cloud federations were increased the computational time increased

linearly, which can be attributed to the fragmentation of service

tree amongst different cloud partitions. The calculation results

revealed that this measurement technique scaled up in a

distributed environment as well. In the future, we intend to carry

out this measurement technique in a real cloud federation where

live migration of VM’s and dynamic resource allocations can take

place.

Number of Cloud partitions

Ti
m

e
to

 M
ea

su
re

 Q
oS

 (i
n

m
in

s)
Number of Nodes = 1200

2.5 2.6 2.7
2.9

3.5
3.7

3.9 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8

Figure 8. Measurements in a Cloud federation environment.

6. CONCLUSION AND FUTURE WORK

We presented a basic mechanism for representing and measuring

QoS continuously for both individual service and composite

services. The same mechanism can be used to represent and

measure different QoS metrics such as availability, response time,

throughput in a continuous manner in a Cloud federation.

Development of this basic mechanism is critical to enabling

elastic service composition in a Cloud federation model where

resource availability is uncertain. We believe that the proposed

measurement techniques will not only help in effective allocation

of Cloud resources to satisfy QoS targets but also lower

operational cost by enabling optimal resource pooling and surplus

re-distribution in the highly dynamic federation model. Due to

mounting concerns of trust and privacy, the task of measuring and

demonstrating SLA compliance may be ultimately delegated to

third-parties [7], who may adopt this clear and simple mechanism

as a uniform standard of measurement.

In our future work, we shall examine how this continuous QoS

measurement technique may prevent costly SLA violations by

making services ‘QoS-aware’ so that autonomic resource

management can occur in the changing environment of a Cloud

federation.

7. REFERENCES
[1] Rajiv Ranjan, Rajkumar Buyya, Manish Parashar.2011.

Special section on autonomic Cloud computing: technologies,

services, and applications. Concurrency and Computation:

Practice and Experience Special Issue: Special section on

Autonomic cloud computing: technologies, services, and

applications Volume 24, Issue 9, pp. 935–937, 25 June 2012

[2] Amazon Elastic Compute Cloud (EC2),

http://aws.amazon.com/contact-us/reserved-instances-limit-

request/

[3] Nicolas Bonvin, Thanasis G. Papaioannou and Karl Aberer.

Autonomic SLA-driven Provisioning for Cloud Applications.

11th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing. May 23-26, 2011, Newport Beach, CA,

USA, pp. 1-5

[4] Rajkumar Buyya, Rajiv Ranjan, Rodrigo N. Calheiros.

InterCloud: Utility-Oriented federation of Cloud Computing

Environments for Scaling of Application Services.

Proceedings of the 10th International Conference on

Algorithms and Architectures for Parallel Processing (ICA3PP

2010, Busan, South Korea, May 21-23, 2010), LNCS,

Springer, Germany, pp. 14-20

[5] Stuart CLAYMAN, Alex GALIS, Clovis CHAPMAN,

Giovanni TOFFETTI, 2010. Monitoring Service Clouds in the

Future Internet. Towards the Future Internet G. Tselentis et al.

(Eds.)IOS Press, 2010,pp.121-122

[6] R. Buyya, D. Abramson, and S. Venugopal. The Grid

Economy. Special Issue on Grid Computing, Proceedings of

the IEEE, M. Parashar and C. Lee (eds.), 93(3), IEEE Press,

March 2005, pp. 698-714

[7] Pankesh Patel, Ajith Ranabahu, Amit Sheth. Service Level

Agreement in Cloud Computing. Cloud Workshops at

OOPSLA09, 2009, pp. 2-4

[8] Shoumen Bardhan, Steve Stevens. Service Level Agreement

Automation. Hewlett-Packard TechCon’11, March 2011, pp 2

[9] {ychi,hjmoon,hakan,tatemura}@sv.nec-labs.com. SLA-Tree:

A Framework for Efficiently Supporting SLA-based Decisions

in Cloud Computing. EDBT/ICDT '11 Proceedings of the 14th

International Conference on Extending Database Technology

Pages 129-140. 2011

http://aws.amazon.com/contact-us/reserved-instances-limit-request/
http://aws.amazon.com/contact-us/reserved-instances-limit-request/

