

Applying SWRL-F to Intercloud Constraints Analysis

Tomasz Wiktor Wlodarczyk, Chunming Rong
Department of Computer Science and Electrical Engineering, University of Stavanger, Norway

tomasz.w.wlodarczyk@uis.no

ABSTRACT

Resource description and constraints analysis emerges as a
necessary element of intercloud interoperability and
federation. A proper language for constraints definition is
essential to efficiently support that task. We propose SWRL-
F as a possible solution. We explain its advantages basing
on a practical example that compares benefits of fuzzy logic
based solution to standard crisp solutions. The analysis
suggests that fuzzy logic solution based on SWRL-F
provides a useful balance between simplicity and
expressivity.

KEYWORDS: intercloud, services, SWRL-F, SWRL,
Fuzzy Logic, constraint, OWL, composition, outsourcing

1. INTRODUCTION

Intercloud constraint analysis is one of the key challenges to
enable interoperation between clouds. Without proper
technologies and tools that interoperation will be at least
limited.

Similar problems have been tackled earlier in the domain of
service computing as described in the Related Work. One of
the most common solutions that emerged was Web Service
Description Language that provided the most basic tool for a
standardized service description. Various semantic
extensions to WSDL emerged with time. Analysis of related
work suggests that a solution to these problems can be
found in a proper application of semantic technologies.

In this paper we propose applying SWRL-F, a fuzzy
extension to SWRL, to help with constraints analysis in an
intercloud scenario. This could albo be possible extended to
service computing in general. SWRL-F is well grounded in
the standard semantic technologies and it provides a small
but useful fuzzy logic extension that might help with
constraints analysis. SWRL-F can later be embedded in an
application to provide a stand-alone solution.

We provide example ontology with a set of simple fuzzy
rules in the context of a generic scenario, with vocabulary
based on AWS (Amazon Web Services1), and a sample of
two types of crisp rules to visualize the basic benefits of
fuzzy logic solution.

Related Work. Bernstein et al. [1] present and discuss
challenges of providing implicit ways to enable clouds
resources and services to be exported or caused to
interoperate. They mention the necessity of a tool to find if
the service description of another cloud meets the interest.
RDF and OWL are indicated as possible tools for that task.

A parallel can be constructed between cloud service
description and general service description. In such a case,
technologies such as WSDL 2 , WSDL-S 3 and OWL-S 4
should be investigated. They have been well researched
before and most probably they could find application also in
the cloud context.

For instance, Czerwinski et al. [2] describe using XML for
description and querying in service discovery. Klusch et al.
[3] describe using semantic technologies for service
discovery and matchmaking basing on similarity
computation. Kuster et al. [4] describe an approach to
service discovery, matchmaking and composition using
elements of fuzzy logic; though, not fuzzy rules.

In an earlier work [5] we have proposed an architecture in
which semantic technologies are the enabling tool for the
inter-enterprise collaboration based on cloud infrastructure.
SWRL-F is an experimental fuzzy logic extension of SWRL
that was introduced in [11] and later extended in [12].

Contributions. This paper extends previous work on
application of fuzzy logic to service matching by analyzing
specific new scenario related to intercloud outsourcing and
by integrating fuzzy reasoning directly with ontology-based
constraints description.

1 http://aws.amazon.com/
2 http://www.w3.org/TR/wsdl 2 http://www.w3.org/TR/wsdl
3 http://www.w3.org/Submission/WSDL-S/
4 http://www.w3.org/Submission/OWL-S/

978-1-61284-383-4/11/$26.00 ©2011 IEEE 391

Organization of the Paper. After the Introduction, in
Section 2 we describe and clarify all the main terms and
concepts used in the paper. Analyzed scenario with all
basics is described in Section 3. Section 4 provides analysis
of fuzzy logic solution, and Section 5 compares fuzzy
solution to two types of crisp solutions. We conclude the
main points in Section 6.

2. BACKGROUND

In this section we describe and clarify all the main terms and
concepts used in the paper.

Description Logic (DL) and Web Ontology Language
(OWL). Description Logic is formal knowledge
representation language. In terms of expressiveness and
efficiency in decision problems it lays between prepositional
logic and first-order predicate logic [6]. Web Ontology
Language is intended to provide a language that can be used
to describe the classes and relations between them that are
inherent in Web documents and applications. OWL DL is a
sublanguage of OWL that supports maximum
expressiveness without losing computational completeness
[7].

Semantic Web Rule Language (SWRL). SWRL is a
combination of the OWL DL and OWL Lite sublanguages
with the Unary/Binary Datalog RuleML sublanguages of the
Rule Markup Language. SWRL includes a high-level
abstract syntax for Horn-like rules in both the OWL DL and
OWL Lite sublanguages of OWL [8].

Protégé. It is a free, open source ontology editor and
knowledge-base framework. The Protégé platform allows to
model ontologies via the Protégé-OWL editor [9].

Fuzzy logic (FL). FL is a form of multi-valued logic, which
is derived from the fuzzy set theory introduced by Zadeh
[10]. Fuzzy set extends binary set by adding a degree of
membership of an element to a set. If we take for example a
variable describing age. We can define several sets
describing this variable e.g. young, middle aged, old. In
binary set theory a particular value would either belong to
one or more of such sets or not. Such information has a
limited value. In fuzzy set theory a particular value could
belong to each set with different degree of membership.
This can provide more valuable information. FL allows
using non-numeric linguistic variables. They can facilitate
expression of knowledge and rules, as they make them
easier to understand. This way one can formulate rules in a
form: IF person is old THEN risk of cancer is high.

3. SCENARIO

In this section we present a basic constraints analysis
scenario. It will serve as a basis for further comparison
between fuzzy and crisp solutions.

Let us assume that a computational job can be described
with two parameters: priority and workload. It might seem
that this assumption is too simplistic. However, it might
happen in many scenarios where there are many different
jobs and describing them with bigger detail would be
inefficient or impractical. Moreover, the purpose of this
assumption is to demonstrate the applicability of SWRL-F
and not necessarily to model a precise situation.
Nevertheless, with growing amount of parameters, as we
later try to demonstrate, relative usability of SWRL-F
increases.

The job is to be outsourced to another cloud. We have to
determine which of available instances should be used. For
the sake of the example we can use vocabulary based on
instances available in AWS. One can group set of standard
and high-cpu instances and represent them approximately on
one axis according to growing computational efficiency, but
also growing price. In such a case a relation between
priority and workload should determine the instance that
will be chosen.

Figure 1. demonstrates simple OWL class implementing
description of such a scenario that includes Instance,
Priority and Workload.

4. FUZZY SOLUTION

In this section we present solution to the scenario using
fuzzy matching in SWRL-F.

In Figure 2. we present definition of Job Priority, in Figure
3. definition of Job Workload and in Figure 4. definition of
Job Instance. Those values are defined using FuzzyValue
class, which is part of SWRL-F ontology. Priority and
Workload are defined using Singleton Fuzzy Set so in fact
their definition is crisp. Nevertheless, all the reasoning
performed on them is fuzzy due to fuzziness in the rules.
This would be a common situation in many applications that
provide approximate value for those parameters in order to
find appropriate instance basing on fuzzy rules. It bears
close similarity with fuzzy control system approach.

Moreover, those values could also be given in as fuzzy sets
and it would not change further conclusions. However, the
comparison with crisp solution would become increasing
more difficult. Modeling complex fuzzy calculations using
Math or even Eval functions would become significantly
more complicated.

392

Detailed definition of FuzzyTerms is omitted for the sake of
space, but it is fairly straightforward and becomes clear
analyzing the rules. In general, Priority and Workload terms
are defined basing on typical qualitative values as Urgent,
Regular or High, Small respectively. Instance terms are
defined basing on example terminology from AWS e.g.
m1.xlarge or c1.medium.

Basing on these definitions we can create a set of simple
rules interrelating Job Priority and Workload with
appropriate Instance. Seven example fuzzy rules are
presented in Figure 5.

Let us inspect first three rules with more detail. First rules
states that urgent job with small workload should be
performed on c1.medium instance.

Job(?j) ∧ hasPriority(?j, ?p) ∧ fuzzymatch(?p,
UrgentPriority) ∧ hasWorkload(?j, ?w) ∧ fuzzymatch(?w,
SmallWorkload) ∧ hasInstance(?j, ?i) → fuzzymatch(?i,
c1.medium)

Second rule states that urgent job with high workload
should be performed on c1.xlarge instance.

Job(?j) ∧ hasPriority(?j, ?p) ∧ fuzzymatch(?p,
UrgentPriority) ∧ hasWorkload(?j, ?w) ∧ fuzzymatch(?w,
HighWorkload) ∧ hasInstance(?j, ?i) → fuzzymatch(?i,
c1.xlarge)

Third rule states that regular job with high workload should
be performed on m1.xlarge instance.

Job(?j) ∧ hasPriority(?j, ?p) ∧ fuzzymatch(?p,
RegularPriority) ∧ hasWorkload(?j, ?w) ∧ fuzzymatch(?w,
HighWorkload) ∧ hasInstance(?j, ?i) → fuzzymatch(?i,
m1.xlarge)

As the actual value can match to some extent more than one
term, all three rules can have influence on the final choice of
instance if the priority is in between urgent and regular,
workload is between high and small. Actually even more
rules from Figure 3. could have the influence. Depending on
the particular definition of fuzzy sets and terms. This
overlapping of rules with fuzzy terms mimics typical human
decision-making process and it is automatically handled by
SWRL-F implementation. It is important to stress that such
overlap is impossible in standard SWRL. Therefore, any
potential overlap has to be foreseen and embedded into each
rule separately, making the process more difficult and error
prone. What we try to demonstrate in the next section.

Moreover, a person that is familiar to some extent with
SWRL can easily understand the sense of the rules. Even if
he is not familiar with the particular scenario or fuzzy logic
at all. Data (or numerical values) are encapsulated in Fuzzy
Terms creating clear and readable rules, which separate data
from the analysis. The benefit is easier rule management, in
particular for large scenarios.

Figure 1. Basic Job Definition

393

Figure 2. Job Priority Definition

Figure 3. Job Workload Definition

Figure 4. Job Instance Definition

394

Figure 5. Fuzzy Rules

Figure 6. Crisp Rules

5. CRISP SOLUTION

In this section we present alternative crisp solutions the
simulate the first two fuzzy rules.

In Figure 4. One can see two rules. First rule utilizes
standard SWRL Math builtin, second rule swrlm builtin
of SWRLTab. Numerical values used in the following
two rules correspond with definition of fuzzy sets from
the Section 4. Let us look at each of those rules in detail.

5.1. SWRL Math Builtin

The following rule utilizes standard SWRL Math Builtin.

Job(?j) ∧ hasPriority(?j, ?p) ∧ hasWorkload(?j, ?w) ∧
hasInstance(?j, ?i) ∧ swrlb:subtract(?r1, ?p, 8) ∧
swrlb:divide(?r2, ?r1, 2) ∧ swrlb:divide(?r3, ?w, 10) ∧
swrlb:multiply(?r4, ?r3, 50) ∧ swrlb:multiply(?r, ?r2, ?r4)
→ hasCrispValue(?i, ?r)

It intends to represent calculations similar to the first two
rules from the fuzzy example. However, it is greatly
simplified as expressing fuzzification and deffuzification
using Math builtin would be too difficult to be worth the
effort.

The problem is the necessity to explicitly contain all the
calculations inside the rule. Using Math Builtin we need
to apply several different operations to provide similar
result as in SWRL-F with only one operation. To achieve
exactly the same result as in SWRL-F it would require
even more calculations in the body of the rule. This
challenge was not attempted here, as it starts to reach out
of the scope of the paper.

Moreover, rules based on Math Builtin have to contain all
constraints related to the Job Instance in one rule. That
could be divided into separate rules in SWRL-F. The
result is additional growth in complexity of the rule,

which might effectively prevent constructing rules with
more than a couple of constraints.

5.2. SWRLTab Builtin

The following rule utilizes SWRLTab builtin.

Job(?j) ∧ hasPriority(?j, ?p) ∧ hasWorkload(?j, ?w) ∧
hasInstance(?j, ?i) ∧ swrlm:eval(?r, "((p-
8)/2)*(w/10)*50", ?p, ?w) → hasCrispValue(?i, ?r)

It makes the calculations much simpler thanks to eval
function. This way five functions from SWRL Math
Builtin can be replaced with only one function. That can
help significantly with including more constraints for
choosing each Job Instance.

However, this approach still requires putting all
constraints calculations relating to particular Job Instance
in one rule. That is particularly problematic in a setting
where one constraint can influence many types of
instances at the same time.

Moreover, any approach based on explicit calculations in
rule body is relatively difficult to understand without
knowing its meaning upfront. It is due to usage of
numerical values which origin is not explicitly given in
the rule.

5.3. Evaluation

As one can notice crisp rules are more difficult to create
in the constraints analysis application. They usually
require writing longer rules, which make modeling more
complex scenarios particularly difficult. Moreover, they
are more difficult to understand without an a priori
knowledge, as they include explicit usage of numerical
values.

395

They provide more limited functionality as all the
constraints relating to a particular variable have to be
contained in one rule. This has additional negative
influence on creation process.

On the other hand, fuzzy rules require more upfront work
with terms definition that was not pictured in Section 3.
Basing on this initial comparison it seems that SWRL-F
can improve on constraints analysis process by providing
simple yet powerful tool. In particular, in the context
where decision logic should be encapsulated in the
ontology.

6. CONCLUSIONS

In this paper we proposed application of SWRL-F to
constraints analysis in intercloud outsourcing. We
presented basic ontology with a set of simple rules that
provided expressive power that seemed appropriate to the
task.

SWRL-F was demonstrated as a useful tool for constraints
analysis in intercloud scenario if the decision logic should
be encapsulated in the ontology. It provided natural,
expressive and manageable way do defined large sets of
interrelated constraints.

The alternative implementations using other SWRL
bultins were showed to be more complex to understand
and less expressive. Inability to separate decision logic
from numerical values and to separate interrelated
constraints into several rules made them difficult to apply
in modeling of large scenarios.

This study provides only initial study of this application
of SWRL-F. Promising results suggest the need for
extending the work.

REFERENCES

[1] David Bernstein, Erik Ludvigson, Krishna Sankar, Steve
Diamond, Monique Morrow, "Blueprint for the
Intercloud - Protocols and Formats for Cloud Computing
Interoperability," iciw, pp.328-336, 2009 Fourth
International Conference on Internet and Web
Applications and Services, 2009

[2] Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes,
Anthony D. Joseph, and Randy H. Katz. 1999. An

architecture for a secure service discovery service. In
Proceedings of the 5th annual ACM/IEEE international
conference on Mobile computing and networking
(MobiCom '99). ACM, New York, NY, USA, 24-35.

[3] Matthias Klusch, Benedikt Fries, and Katia Sycara.
2006. Automated semantic web service discovery with
OWLS-MX. In Proceedings of the fifth international
joint conference on Autonomous agents and multiagent
systems (AAMAS '06). ACM, New York, NY, USA,
915-922.

[4] Ulrich Kuster, Birgitta Kunig-Ries, Mirco Stern, and
Michael Klein. 2007. DIANE: an integrated approach to
automated service discovery, matchmaking and
composition. In Proceedings of the 16th international
conference on World Wide Web (WWW '07). ACM,
New York, NY, USA, 1033-1042.

[5] Tomasz Wiktor Wlodarczyk, Chunming Rong, and Kari
Anne Thorsen. 2009. Industrial Cloud: Toward Inter-
enterprise Integration. In Proceedings of the 1st
International Conference on Cloud Computing
(CloudCom '09), Martin Gilje Jaatun, Gansen Zhao, and
Chunming Rong (Eds.). Springer-Verlag, Berlin,
Heidelberg, 460-471

[6] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
P. Patel-Schneider, The Description Logic Handbook:
Theory, Implementation and Applications, Cambridge
University Press, 2003.

[7] “OWL Web Ontology Language Guide” Available:
http://www.w3.org/TR/owl-guide/.

[8] “SWRL: A Semantic Web Rule Language Combining
OWL and RuleML” Available:
http://www.w3.org/Submission/SWRL/.

[9] “The Protégé Ontology Editor and Knowledge
Acquisition System” Available:
http://protege.stanford.edu/.

[10] L. Zadeh, “Fuzzy sets,” pp. 338–353.

[11] T. W. Wlodarczyk, M. O’Connor, C. Rong, and M. A.
Musen, “SWRL-F - A Fuzzy Logic Extension of the
Semantic Web Rule Language” in CEUR Workshop
Proceedings of 6th International Workshop on
Uncertainty Reasoning for the Semantic Web (URSW),
Shanghai, China, 2010

[12] T. W. Wlodarczyk, M. O’Connor, C. Rong, and M. A.
Musen, “SWRL-F - A Fuzzy Logic Extension of the
Semantic Web Rule Language” accepted at The
International Conference on Web Intelligence, Mining
and Semantics, Sogndal, Norway 2011

396

