Page 1 of 4

26-Oct-13

Intercloud Testbed
Working Document
[image: image1.png]IEEE
CLOUD COMPUTING

INTERCLOUD
TESTBED




Intercloud Service Invocation Framework
Copyright 2013 IEEE. All rights reserved. 

Redistribution and use in source and binary forms, with or without modification, are 

permitted provided that the following conditions are met: 

1. Redistributions of source code must retain the above copyright notice, this list 

of conditions and the following disclaimer. 

2. Redistributions in binary form must reproduce the above copyright notice, this 

list of conditions and the following disclaimer in the documentation and/or other 

materials provided with the distribution. 

THIS SOFTWARE IS PROVIDED BY THE IEEE ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, 

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FREEBSD PROJECT OR 

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

The views and conclusions contained in the software and documentation are those of the 

authors and should not be interpreted as representing official policies, either expressed 

or implied, of the IEEE.
Contents

3Revision History


3Introduction




Revision History
	Name
	Date
	Reason for Change
	Version

	Deepak Vij & Somesh Mukherjee
	10/26/2013
	Draft for initial review 
	1.0.0

	
	
	
	

	
	
	
	


Introduction
The need for loose-coupling in the highly distributed cloud computing environment is highly desirable - the looser the components are, the bigger they scale. For better manageability and high-availability, it is highly desirable to have all the components loosely coupled. The key is to build components without having tight dependencies between each other, so that if one component were to die (fail), sleep (not respond) or remain busy (slow to respond) for some reason, the other components in the system are built so as to continue to work as if no failure is happening.
Typically, asynchronous service invocation framework is highly desirable in such a loosely-coupled environment as opposed to synchronous HTTP/REST based service invocation model. Cloud computing frameworks such as “OpenStack” employ underlying technologies such as AMQP based RabbitMQ messaging system to this regards. However, standards such as AMQP & JMS etc. are not really suitable for extremely highly distributed “Intercloud” based federated cloud computing environment.

 

Recently, there have been new developments to this regards. Open source frameworks such as “Atmosphere” and “SwaggerSocket” have addressed this particular issue by enabling “REST” as the WebSocket sub-protocol for service invocation. This seems to be a much better option as there is no change in the way services are designed and architected using popular “REST” based architectural type and at the same time the performance benefits of full-duplex WebSocket communication.

 

There is yet another similar protocol called “Socket.IO”. However, the WebSocket sub-protocol it employs is not “REST” based. But it is built using highly efficient asynchronous IO framework called “node.js”.  “Atmosphere” and “SwaggerSocket”, on the other hand, use the Java NIO (non-blocking IO) technique. It seems “node.js” is very highly memory efficient due to its “Closure-Callback” mechanism versus Java NIO’s “Messaging & Queuing” technique for asynchronous IO processing.

 

Based on what we have researched so far, it seems “Atmosphere” and “SwaggerSocket” seems to be the only viable option at this stage in spite of memory efficiencies related issues with Java NIO technique. Ideal scenario would be something like “Atmosphere” and “SwaggerSocket” in conjunction with “node.js” as the underlying asynchronous IO processing technique. All this needs to be looked into for formalizing the suitable asynchronous service invocation framework. 

Following are the key desired characteristics of internet scale asynchronous service invocation framework:

· Ease of deployment – HTTP like ease of deployment. Prevalent asynchronous protocols such as JMS, AMQP etc. are very cumbersome and not viable in a decentralized environment.

· Tremendous, Internet scale Scalability

· etc.
