

Toward a Dynamic Trust Establishment Approach for Multi-provider Intercloud Environment

Canh Ngo, Yuri Demchenko {t.c.ngo, y.demchenko}@uva.nl

System and Network Engineering Group University of Amsterdam

Agenda

- Motivation
- Trust Management Challenges
- Trust Model
 - Attribute-based Trust approach
- Application
 - Dynamic Trust Establishment for Intercloud
 - Trust Evaluation Engine
- Conclusion and Future work

Motivation

Intercloud use-cases

- Enterprise IT infrastructure migration
- Large project-oriented scientific infrastructures
- IT infrastructure disaster recovery

Motivation

Intercloud Properties

- Communication between Cloud providers/applications
 - Vertical integration: different service layers
 - Heterogeneous: cross-domains, composite services
- Distributed, public data access environment
- Data/resources are off-premise
- RORA*: cloud resource ownerships
 - Physical ownership
 - Management/brokering ownership
 - Subscription/consumption ownership

^{*}RORA: Resource, Ownership, Role, Action (GEYSERS project)

Challenges

- Distributed multiple security domains
 - Authorizations based on identities are not applicable
 - Attributed-based access control (ABAC): different attributes profiles at domains
- Clouds composed from multiple providers
 - Authorization for "unknown" entities ("know implicitly")?
 - Relations between Cloud providers: dynamic, established on Cloud provisioning lifecycles
- Approach: Trust Management for distributed, public environment
 - Attribute-based, attribute semantics can be transformed between domains
 - Multiple levels of delegations
 - Dynamic trust-chain establishment
 - Efficient attribute-based trust evaluation implementation

- **Entities**
 - Cloud Providers
 - Physical Cloud Providers: PIP ٠
 - Intermediate Cloud Providers: VIP, Cloud Broker
 - Cloud Clients
 - End-users/applications —
- **Trust**

"the belief of trustor in trustee to behave reliably, securely in a specific context"

- **Trust relationships**
 - **Properties**: _
 - Asymmetric ٠
 - Contextual
 - Time-constraint ٠
 - Types:
 - Direct trust relationships ٠
 - Indirect trust relationships ٠

Virtual Resource of VI-1 (blue)

Virtual Resource of VI-2 (red)

Trust Mechanisms(1)

• Trust decisions

- Simple: binary (trust, distrust)
- Complex: trust predicates
- Attribute-based trust policies
 - Attributes to describe trust context
 - Policy actor, policy target, policy context
 - Formal logic formula:

 $X = (X_1, X_2, \dots, X_n); X_i \in P_i$ $f(X) = \bigwedge_i \left[\bigvee_j \left(\bigwedge_k m_k \right) \right]$

Trust Mechanisms(2)

• Direct trust relationships

- Attributes:

$$X = (x_1, x_2, ..., x_n); x_i \in P_i$$

Attribute-based trust policy:

 $f_{actor}(target, X) \rightarrow pred$

- Actor, target: entities
- X: attribute-based context
- pred: predicates (e.g. trust, distrust, etc)

Trust Mechanisms(3): Delegation

- Indirect trust relationship?
- Delegation

"Transferring part of the ownership (i.e., right to control as defined by the policy/administrative context) from the trustor to the trustee"

• Trust credential issuer policy

 $f_{trustor_B}(trustee_A, X) \rightarrow tc_B^X$

tc: trust credential:
{trustor, trustee, context}

Delegation policy

 $f^d_{trustor}(X) \to \{targets\}$

X – trust context
d – abbrev. for delegation
targets – Id/trust_anchors
of recommenders (e.g. B)

Trust Mechanisms(4): Delegation

• Example:

"B delegates A to access (r,w, etc) cloud resource X at C"

• At A: access context description X

• At B:
$$f_B(A, X) \to tc_B^{X_A}$$

- At C:
 - Delegation policy at C for context X $f_C^d(X) \rightarrow targets \coloneqq \{B\}$
 - Trust policy for unknown entities

$$f_C(?, X) \coloneqq [X.tc_B^A: B \in f_C^d(X)] \to trust|pred$$

Trust Management: Challenges & Directions

- Trust policy evaluation: attribute-based policy evaluation
 - XACML with extensions
 - Using Multi-data types Interval Decision Diagrams (MIDD): neutralized with policy languages.
 - Efficient in evaluation complexity.
 - Authentic of attributes, trust credentials: SAML assertion to carry trust credentials
- Distributed policy evaluation: using Push model in AAA
- Trust context description:
 - Attribute profiles: using resource description languages
 - Semantics inference between attribute namespace ontologies
- Dynamic trust relationships
 - On-demand cloud resources
 - Provision trust policies

Application

Dynamic Trust Establishment for Intercloud

- Use-case:
 - Consuming cloud resources from sub-contractor Cloud Service Providers
- Adopt cloud resources/services lifecycles
 - Request Reservation Deployment Operation Decommissioning
 - Reservation & Deployment phases
 - Establish direct trust relations between entities and/by linking/chaining trust anchors
 - Generate trust policies & delegation policies for provisioned cloud resources
 - Local attribute name spaces resolution
 - Operation phase
 - Establish (indirectdynamic) trust relationships for instantly provisioned infrastructures using trust policies & delegation policies

Indirect/Dynamic Trust Establishment Protocol

Operation phase:

Ŵ

Establish indirect trust relationships using trust policies & delegation policies

Indirect Trust Establishment Protocol Flow

Operation phase:

Establish indirect trust relationships for delegation chain of K providers (trust-chain)

Indirect Trust Establishment Protocol Flow with Push Model

C: client P_i: Cloud Providers i

Implementation

 Dynamic trust establishment protocol: experiment in Geysers (<u>https://geysers.eu</u>)

Ŵ

- Trust evaluation engine: SNEXACML
 - XACML extensions:
 - Policy issuer
 - Issuing trust credential: obligations
 - SAML assertion extension
 - Evaluation performance
 - Using Multi-type Interval Decision Diagrams (MIDD)

Trust evaluation engine: performance analysis

Datasets	Policy level	# Policy- sets	#Policies	#Rules	Attr	Operators
GEYSERS	3	6	7	33	3	=
Continue-a	6	111	266	298	14	=
Synthetic- 360	4	31	72	360	10	=(80%), co- mplex(20%)

MIDD evaluation time

Micro-benchmark evaluation response times

Average request evaluation time

UNIVERSITEIT VAN AMSTERDAM

Ň

Conclusion

- An attribute-based approach for dynamic trust establishments for multiple Cloud providers
 - Attribute trust policies: flexible, manageable
 - Open for attribute namespaces resolutions
 - Dynamic provisioning trust relationships
 - High performance evaluation

Discussion and Future work

- On-going work
 - Resolutions of attribute namespaces ontologies
 - Attribute validation
 - Apply dynamic trust establishment protocol to Intercloud
 - Trust Policy Engine
- P2302 Group
 - Section 6.6-6.8, Intercloud Security
 - Trust Management Framework
 - Trust topology, protocols, evaluation mechanisms.
 - Auxiliary functions: collect and validate trust values, attributes, trust credentials

Thank you!

Contact Information

Canh Ngo, Yuri Demchenko {t.c.ngo, y.demchenko}@uva.nl System and Network Engineering research group (SNE) University of Amsterdam

UNIVERSITEIT VAN AMSTERDAM