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Abstract—In the landscape of cloud computing, the compet-
ition between providers has led to an ever growing number of
cloud solutions offered to consumers. The ability to run and
manage multi-cloud systems (i.e., applications on multiple clouds)
allows exploiting the peculiarities of each cloud solution and hence
optimising the performance, availability, and cost of the applica-
tions. However, these cloud solutions are typically heterogeneous
and the provided features are often incompatible. This diversity
hinders the proper exploitation of the full potential of cloud
computing, since it prevents interoperability and promotes vendor
lock-in, as well as it increases the complexity of development and
administration of multi-cloud systems. This problem needs to be
addressed promptly. In this paper, we provide a classification
of the state-of-the-art of cloud solutions, and argue for the need
for model-driven engineering techniques and methods facilitating
the specification of provisioning, deployment, monitoring, and
adaptation concerns of multi-cloud systems at design-time and
their enactment at run-time.

Keywords—cloud computing, provisioning, deployment, monit-
oring, adaptation, multi-cloud, model-driven engineering, domain-
specific modelling language, models@run-time, CloudML

I. INTRODUCTION

Cloud computing is a computing model enabling ubi-
quitous network access to a shared and virtualised pool
of computing capabilities (e.g., network, storage, processing,
and memory) that can be rapidly provisioned with minimal
management effort [1]. The landscape of cloud computing
encompasses a multitude of cloud providers, as well as several
infrastructure-as-a-service (IaaS) [1] and platform-as-a-service
(PaaS) [1] solutions. The ability to run and manage multi-cloud
systems (i.e., applications targeting multiple private, public, or
hybrid clouds) allows exploiting the peculiarities of each cloud
solution and hence optimising performance, availability, and
cost of the applications. However, these cloud solutions are
typically heterogeneous and the provided features are often
incompatible. This diversity hinders the proper exploitation
of the full potential of cloud computing, since it prevents
interoperability and promotes vendor lock-in, as well as it
increases the complexity of development and administration
of multi-cloud systems. This challenge needs to be addressed
promptly.

There are several projects that aim at addressing this
challenge by providing solutions for provisioning, deploy-
ment, monitoring and adaptation of cloud systems. The results
from these projects are paramountly important to promote
interoperability and prevent vendor lock-in, but they are not
sufficient to properly manage the complexity of development
and administration of multi-cloud systems [2], [3].
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Figure 1. The stack of cloud solutions

In this paper, we provide a classification of the state-of-the-
art of cloud solutions, and discuss why these solutions are not
sufficient to properly manage the complexity of development
and administration of multi-cloud systems. Then, we argue that
the application of advanced model-driven engineering (MDE)
methods and techniques would be appropriate to tame this
complexity, i.e., enabling the specification of provisioning,
deployment, monitoring, and adaptation concerns at design-
time and their automatic enactment at run-time. Finally, we
present our vision for advancing the software engineering of
multi-cloud systems, as well as our realisation of this vision
which we call Cloud Modelling Language (CloudML) [2].

The remainder of the paper is organised as follows. In
Section II, we outline a classification of the state-of-the-art
of cloud stacks, libraries, and frameworks. In Section III, we
present CloudML, a domain-specific modelling language along
with a run-time environment that facilitate the specification of
provisioning, deployment, monitoring, and adaptation concerns
of multi-cloud systems at design-time and their enactment at
run-time.

II. CLASSIFICATION OF CLOUD SOLUTIONS

The cloud market counts numerous cloud solutions at
different levels of the cloud stack, such as IaaS providers,
IaaS/PaaS libraries, as well as PaaS frameworks. As men-
tioned, this diversity prevents interoperability and promotes
vendor lock-in. In the following, we present each of these
solutions and explain how they build upon each other to form
a stack (see Figure 1).
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A. Providers

The cloud computing market counts numerous providers.
The literature encompasses several taxonomies and surveys
of providers [4], [5], but the cloud computing market has
been constantly evolving during the latest years, and the data
collected just few years ago is already outdated.

Table I shows a classification of the current major public
IaaS providers. This classification is based on headquarters,
data centres’ location, and uptime service level agreement
(SLA). Note that the list of providers is by no means exhaust-
ive, but it includes those that we believe are the current major
players at least in the European and North American markets.

The headquarters column shows that 15 providers are
based in the USA while only six are based in the Europe.
However, the data centres’ location column shows that 17
providers have data centres in the USA while 16 have data
centres in Europe. This information is particularly relevant
with respect to data protection laws and regulations, such as
the EU data protection directive (Directive 95/46/EC) and the
upcoming data protection regulation (to be adopted in 2014),
which restrict the geographical locations where the data of EU
residents can be stored and processed.

The uptime SLAs column shows that all the providers
promise at least 99.9% uptime. This indicates that the dif-
ference in terms of uptime SLAs across providers is not
significant. However, the uptime SLA does not reflect the
actual uptime, but rather a contract between the provider and
the clients, and the latest years have witnessed several severe
outages at major providers [6]. The interested reader may refer
to the CloudSleuth’s Global Provider View [7] to have an
intuition of the reliability of the current major providers.

Public providers have traditionally been offering a set of
proprietary APIs for the provisioning, deployment, monitoring,
and (partially) adaptation of cloud capabilities. Some minor
providers have been implementing APIs which are compatible
with the ones from leading providers such as the Amazon
AWS [8] APIs. This solution may increase the interoperability
across some providers. However, it does not solve the vendor
lock-in problem.

B. Stacks

A first step towards solving this problem is provided by
IaaS stacks, such as OpenStack [9] or VMWare vCloud [10],
for creating and managing infrastructure cloud services in
private, public, and hybrid clouds.

Table II shows a classification of these stacks. This clas-
sification is based on the license, implementation languages,
hypervisors supported, main contributors, and adopters of each
stack.

Apache CloudStack [11] is free software included in the
Apache Incubator project since 2012. It was originally de-
veloped by Citrix and is currently maintained by the Apache
Software Foundation. CloudStack provides features such as
resource management, user management, API, and graphical
user interface (GUI).

Eucalyptus [12] is a free software project initiated in
2008. It is developed and maintained by Eucalyputs Systems.

Eucalyptus allows building Amazon AWS-compatible private
and hybrid clouds.

OpenNebula [13] is a free software project initiated in
2008. It is sponsored by C12G, a cloud computing company
associated with the Scientific Park of Madrid, and maintained
by the OpenNebula Community. OpenNebula aims at provid-
ing an industry standard solution for creating and managing
virtualised enterprise data centres and IaaS clouds.

OpenStack [9] is a free software project launched in 2010.
It was originally developed by Rackspace and NASA and
is currently maintained by the OpenStack Foundation with
contributions from the major players in cloud computing.
OpenStack provides an API and a dashboard to manage pools
of computing, storage, and networking resources.

vCloud [10] is commercial integrated cloud infrastructure
solution launched in 2008 and developed by VMWare.

As depicted by the IaaS providers column of Table II,
the cloud market seems to be consolidating at the IaaS level
towards a few IaaS stacks. As shown for the 21 public
providers listed in Table I, seven providers adopt OpenStack
(four fully, and three partially), four providers adopt VMWare
vCloud, one provider adopts CloudStack and the remaining
nine adopt proprietary stacks (although one is compatible with
Amazon AWS APIs). This indicates that OpenStack has gained
relatively wide acceptance across public providers. This trend
may increase the interoperability across providers adopting the
same stack. However, it does not support the development and
administration of multi-clouds systems.

C. Libraries

A second step towards supporting multi-cloud systems is
provided by some IaaS/PaaS libraries such as jclouds [14],
Deltacloud [15], or Simple Cloud [16]. These libraries provide
abstraction layers facilitating the provisioning and deployment
of multi-cloud systems through a single interface. They support
numerous IaaS providers as well as IaaS stacks. These libraries
are at the border between IaaS and PaaS levels since they allow,
for instance, a developer to run scripts on a virtual machine or
to deploy a load balancer that may rely on platform services.

Table III shows a classification of these libraries. This
classification is based on license, implementation languages,
and supported providers/stacks of each library.

fog [17] is a Ruby API providing access to computing
and storage facilities on multiple clouds. It helps developers
in testing and simulating their deployment by providing an
in-memory representation of cloud resources.

jclouds [14] is a Java and Clojure API delivering an
abstraction layer over the APIs of IaaS providers and stacks. It
facilitates developers in describing generic virtual machines by
means of templates. It also allows deploying multiple virtual
machines and managing them as a group.

libCloud [18] is a Python API providing solutions for
managing multiple clouds that are akin to the ones of jclouds.

Simple Cloud [16] is a PHP API delivering mechanisms
for managing the life-cycle of a virtual machine on multiple
clouds. It offers services for data storage, message queue, and
monitoring.

888



Table I. PROVIDERS

Provider Headquarters Data centres location Uptime SLA
Amazon AWS USA USA, Brazil, Ireland, Japan, Singapore, Australia 99.95%

AT&T Cloud USA USA 100.00%

Bit Refinery USA USA, UK 100.00%

GoGrid USA USA, Netherlands 100.00%

Google Compute Engine USA USA, EU (Unspecified) 99.95%

Hosting.com USA USA 100.00%

HP Cloud USA USA 99.95%

IBM SmartCloud Enterprise USA USA, Germany, Japan 99.90%

Microsoft Windows Azure USA USA, Ireland, Netherlands, Hong Kong, Singapore 99.95%

Nephoscale USA USA 99.90%

OpSource USA USA, France, UK 100.00%

Rackspace USA USA, UK, Hong Kong 100.00%

ReliaCloud USA USA 100.00%

Softlayer USA USA, Netherlands, Singapore 100.00%

Terramark USA USA, Canada, Brazil, Colombia, Dominican Republic, Belgium, France, Germany, Ireland, Italy,
Luxembourg, Netherlands, Spain, Sweden, Turkey, UK, China, Japan, Singapore, Australia

100.00%

Aruba Cloud Italy Italy 99.95%

CloudSigma Switzerland Switzerland, USA 100.00%

Gandi France France, USA 99.95%

GreenQloud Iceland Iceland 100.00%

Lunacloud UK France, Germany, Latvia, Portugal 99.99%

Memset UK UK 99.99%

Table II. STACKS

Stack License Implementation lan-
guages

Supported
hypervisors

Main contributors Adopters

CloudStack Apache License 2.0 Java KVM, Citrix Xen,
VMWare vSphere

Citrix, Apache Soft-
ware Foundation

GreenQloud

Eucalyptus GPL v3 Java, C KVM, Citrix Xen,
VMWare vSphere

Eucalyptus Systems

OpenNebula Apache License 2.0 C++, C, Ruby, Java,
Shell script, lex, yacc

KVM, Citrix Xen, Or-
acle VM, VMWare
vSphere

OpenNebula
Community

OpenStack Apache License 2.0 Python KVM, Citrix Xen,
VMWare vSphere

Rackspace, NASA AT&T Cloud Architect, HP Cloud, IBM Smart-
Cloud Enterprise, Nephoscale (storage), Rackspace,
Softlayer (storage), Memset (storage)

VMWare
vCloud

Commercial VMWare vSphere VMWare Bit Refinery, Hosting.com, ReliaCloud, Terramark

Table III. LIBRARIES

Stack License Implementation lan-
guages

Supported providers/stacks

Deltacloud Apache License 2.0 Ruby http://deltacloud.apache.org/supported-providers.html

fog MIT License Ruby http://fog.io/about/supported_services.html

jclouds Apache License 2.0 Java http://www.jclouds.org/documentation/reference/supported-providers/

libCloud Apache License 2.0 Python http://libcloud.apache.org/supported_providers.html

Simplecloud BSD license PHP

Most of these libraries are language-dependent since they
are designed to interface with programming language like
Ruby, Java, and PHP. However, this is not the case of
Deltacloud [15], another API providing drivers for computing
and storage facilities. It consists of a REST interface where cli-
ents send requests to a Deltacloud server (on a local or remote
machine) wrapping the drivers to the various cloud providers.
This approach is language-independent but introduces a single
point of failure.

These libraries support the development and administration
of multi-cloud systems by providing abstraction layers to
multiple clouds. However, they do not provide mechanisms
for automatic provisioning and deployment of multi-cloud
systems.

D. Frameworks

The latest step towards supporting multi-cloud systems is
provided by some specific PaaS frameworks. These frame-
works aim at reducing the complexity of managing multi-
clouds systems. They provide capabilities for the provisioning,

deployment, monitoring, and adaptation of multi-cloud sys-
tems without being language-dependent. They partially reuse
the IaaS/Paas libraries (see Figure 1). As claimed in [19], two
main types of PaaS can be distinguished. One type of PaaS
such as OpenShift [20] considers the underlying IaaS as a
black box; i.e., it does not provide visibility and control over
the underlying infrastructure. Another type of PaaS considers
the same IaaS as a white box, i.e., it provides full visibility
and control over the underling infrastructure. Without visibility
and control on the underlying infrastructure, developers can
not explicitly adapt the infrastructure to optimise performance,
availability, and cost.

In the following, we consider the latter type of frameworks.
Some of these frameworks rely on so-called “DevOps” tools
such as Chef [21] and Puppet [22] that automate the deploy-
ment of applications, as well as the management of cloud
capabilities. With visibility and control on both IaaS and PaaS
levels, developers can exploit the peculiarities of cloud solu-
tions at each level of the cloud stack. These frameworks embed
mechanisms to monitor cloud resources and their consumption
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(e.g., computing, memory, storage, networking), as well as the
applications and their status. They also offer cloud-specific
adaptation mechanisms such as load balancing, auto scaling,
and automatic failure recovery.

Table IV shows a classification of these frameworks. This
classification is based on license, implementation languages,
interfaces, supported providers/stacks, monitoring support, and
adaptation support.

These frameworks provide mechanisms for optimising
performance, availability, and cost of multi-cloud systems.
However, they do not provide any methodology supporting
the engineering of multi-cloud systems at a high level of
abstraction. Thus, the developer would still hack at the source
code level, which is challenging to maintain, rather than
engineering at the modelling level.

E. EU projects

Several on-going European projects are providing stacks,
libraries or frameworks for the provisioning, deployment,
monitoring and adaptation of cloud-based systems at IaaS or
PaaS levels. In the following, we present these projects with a
focus on their ability to target multi-clouds systems.

4CaaST [23] delivers a solution for elastic and optimised
hosting of Internet-scale multi-tier applications. This solution
is based on Chef to monitor the execution and manage the
life-cycle of applications.

ARTIST [24] aims at providing model-based techniques for
representing applications as well as cloud infrastructures and
platforms. The expected outcomes of the project are a vendor-
and platform-independent methodology and an automation-
oriented toolset for re-engineering, migration, maintenance and
evolution of cloud-based applications.

CELAR (Cloud ELAsticity pRovisining) [25] aims at de-
livering an automated and customisable system for elastic
provisioning of resources in cloud computing platforms. The
expected outcomes of the project are a middleware for elastic
provisioning that automatically manages and adapts cloud
resources, an information system describing cloud resources
and providing a search mechanism, and a scalable monitoring
tool.

Cloud4SOA [26], [27] supports cloud application de-
velopers with multi-platform management, monitoring and
migration by semantically interconnecting heterogeneous PaaS
offerings. The solution currently supports CloudFoundry, Her-
oku, OpenShift, and Amazon Elastic Beanstalk.

CloudScale [28] aims at supporting scalable service en-
gineering. The expected outcomes of the project are tools
and methods for the modelling of design alternatives and the
analysis of their effect on scalability and cost, as well as for
detecting scalability problems by analysing code.

Contrail [29], [30] aims at solving the vendor lock-in
problem by allowing the seamless switch of cloud provider.
The solution requires an agreement in the adoption of a
common technology stack among cloud providers.

CumuloNimbo [31] provides a solution for high scalab-
ility without sacrificing data consistency and ease of pro-
gramming. The solution provides self-healing subsystems that

automatically repair themselves in the event of failures without
disrupting service provisioning and without introducing data
inconsistencies during recovery.

MODAClouds [32], [3] aims at delivering methods, a
Decision Support System (DDS), an Integrated Development
Environment (IDE), and a run-time environment for the high-
level design, early prototyping, semiautomatic code generation,
and automatic deployment of applications on multiple clouds
with guaranteed QoS. The work presented in this paper is
partially financed by this project (see Section V).

mOSAIC [33], [34] tackles the vendor lock-in problem by
providing an open-source platform including an API for pro-
visioning and deployment of applications on multiple clouds.

OPTIMIS [35], [36] aims at enabling organisations to auto-
matically externalise services and applications to trustworthy
and auditable cloud providers in the hybrid model. The solution
provides some continuous monitoring mechanisms that can be
used to check SLA violations.

PaaSage [37] aims at delivering an open and integrated
platform to support both design and deployment of cloud
applications, together with an accompanying methodology that
allows model-based development, configuration, optimisation,
and deployment of existing and new applications independ-
ently of the existing underlying cloud infrastructures. The work
presented in this paper is partially financed by this project (see
Section V).

REMICS [38] supports legacy systems migration to clouds
by providing model-driven methodology and tools, which
significantly improve the baseline OMG’s Architecture Driven
Modernization (ADM) initiative. The work presented in this
paper represents a continuation of the work done in this
project [2] (see Section V).

Reservoir [39], [40] provides solutions for managing the
provisioning of IaaS resources on demand. The expected
outcome of the project is to enable providers of cloud infra-
structure to dynamically partner with each other.

F. Discussion

The stacks, libraries and frameworks presented in this
Section provide mechanisms to automate the provisioning and
deployment of application on multiple clouds. However, as
explained in [3], there is a “... need for developers to be able
to design their software systems for multiple Clouds and for
operators to be able to deploy and re-deploy these systems
on various Clouds depending on the convenience. The current
Cloud literature, however, does not seem to pose attention to
this issue as it is focused on considering the perspective of
the Cloud providers, by offering mechanisms for auto-scaling
of Clouds and for interoperability and federation between
Clouds.”

MDE is a branch of software engineering which aims at
improving the productivity, quality and cost-effectiveness of
software development by shifting the paradigm from code-
centric to model-centric. This approach, which is commonly
summarised as “model once, generate anywhere”, is particu-
larly relevant to tame the complexity of developing complex
systems such as multi-cloud systems. Models and modelling
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Table IV. FRAMEWORKS

Framework License Implementation
languages

Interface Supported providers/stacks Monitoring support Adaptation support

Cloudify Apache
License 2.0

Java, Groovy,
JavaScript

CLI, web-based
monitoring interface,
REST API to
Cloudify service

Amazon, OpenStack, Azure,
HP cloud, Rackspace, your
own local provider

Application status and logs,
Deployment status and logs,
Resource metrics

Auto-scaling based on met-
rics on resources and number
of virtual machines, Auto-
matic failure recovery

Cloud
Foundry

Apache
License 2.0

Ruby, Java,
JavaScript

REST API, CLI, Ec-
lipse plug-in

Amazon, OpenStack, Rack-
space, Eucalyptus, your own
local provider

Application status and logs,
Environment variables, Re-
sources metrics

Change the number of virtual
machines associated to an ap-
plication, Automatic failure
recovery

Scalr Apache
License 2.0

Python, PHP,
JavaScript

REST API, Web-
based user interface

Amazon, OpenStack, Rack-
space, Nimbula, Eucalyptus,
IDC Frontier, CloudStack,
Cloud Foundry

Application status and logs,
Load statistics, Notification
system

Auto-scaling of the
infrastructure and database
when overloaded or
scheduled, Automatic failure
recovery

languages as the main artefacts of the development process
enable developers to work at a high level of abstraction by
focusing on cloud concerns rather than implementation details.
Model transformation as the primary technique to generate
(parts of) software systems restrains developers from repetitive
and error-prone tasks such as coding.

Domain-specific modelling languages (DSMLs) provide
abstractions and notations that allow direct and understandable
expression of domain concepts instead of encoding these in a
lower level programming language. DSMLs are particularly
relevant for facilitating the specification of provisioning and
deployment concerns of multi-cloud systems at design-time.

The frameworks presented in this Section offer some
cloud-specific techniques and methods for adaptation and self-
adaptation [41], such as load balancing, auto scaling, and
failure recovery. These adaptations are triggered when some
of the requirements specified at design-time are not fulfilled
any more. These requirements are related either to computing
resources (e.g., the compute load should be below 75%) or
to desired topologies (e.g., the application should be deployed
and running on at least two virtual machines). Self-adaptive
systems are generally based on a control loop like the well-
known Monitor–Analyse–Plan–Execute from autonomic com-
puting [41]. The input of the reasoning systems consists of
observables describing the running system and its context. The
output consists of a set of adaptation actions. The implement-
ation of this loop in the context of multi-cloud systems can be
particularly complex.

Models@run-time [42] extend the adoption of models to
the run-time environment. This approach is particularly relev-
ant for facilitating the dynamic adaptation of multi-cloud sys-
tems at run-time. It has already been shown that models@run-
time facilitate reasoning about- and dynamic adaptation of
running systems [43] by providing an abstract representation
of the system causally connected to the running system; i.e., a
change in the model of the system is reflected on-demand in
the running system, whereas a change in the running system
is automatically reflected in the model of the system. This
enables the continuous evolution of the system with no strict
boundaries between design-time and run-time activities.

As far as we know, the frameworks presented in this
section do not provide such abstraction. This deficiency is
compensated by CloudML.

III. CLOUDML

CloudML aims at facilitating the provisioning, deployment,
monitoring, and adaptation of multi-cloud systems. CloudML
is built upon MDE techniques and methods, and provides: (i)
a DSML for modelling the provisioning and deployment of
multi-cloud systems at design-time; (ii) a models@run-time
environment for enacting the provisioning, deployment, and
adaptation of these systems, as well as monitor their status
at run-time. This run-time environment can be accessed by a
reasoning system through a model-based interface. CloudML
is agnostic to any development paradigm and technology,
meaning that the developers can design and implement the
applications based on their preferred paradigms and technolo-
gies.

A. Roles and work-flow

CloudML considers two possible roles in the deployment
work-flow: a cloud application developer (hereafter called
cloud-app developer) and a cloud application vendor (hereafter
called cloud-app vendor).

The cloud-app developer develops the applications to be
deployed on the cloud. She knows the internals of these
systems, so she can model their topologies together with
requirements, constraints, and dependencies. This information
is collected into one or more templates of the provisioning and
deployment model.

The cloud-app vendor delivers the applications as a ser-
vice to consumers. She does not necessarily know about
the internals of these systems, but she can specify a set of
additional requirements, constraints, and dependencies related
to her business (e.g., budget constraints).

At design-time, the typical deployment work-flow will
consist of two steps. First, the cloud-app developer specifies
one or more templates of the provisioning and deployment
model. Second, the cloud-app vendor adjusts and combines
these templates into the actual provisioning and deployment
model.

B. Design-time

Figure 2 presents the architecture of CloudML, which
reflects part of the OMG Model-Driven Architecture [44].

The DSML of CloudML is specified by a metamodel
which, inspired by component-based approaches, implements
the type-instance pattern [45]. At design-time, this DSML is
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Figure 2. The architecture of CloudML

used to specify the provisioning and deployment models. These
models encompass the topology of the nodes of the cloud
infrastructure, as well as the topology of the software artefacts
deployed on these nodes.

CloudML considers provisioning and deployment mod-
els at two levels of abstraction, namely Cloud Provider-
Independent Model (CPIM), and Cloud Provider-Specific
Model (CPSM) (see Figure 2).

The CPIM represents a generic provisioning and deploy-
ment model that is independent of the cloud provider. This
model consists of two main kinds of elements, namely the
node types and the artefacts types.

A node type represents a generic virtual machine (e.g., a
virtual machine running GNU/Linux). This element can be
parameterised by provisioning requirements (e.g., 2 cores ≤
compute ≤ 4 cores, 2 GiB ≤ memory ≤ 4 GiB, storage ≥ 10
GiB, location = Europe).

An artefact type represents a generic component of the
application (e.g., a Java servlet of an application for document
collaboration, a Jetty container, or a MongoDB database). This
element can be annotated with deployment commands (e.g.,
retrieve the Java servlet from http://cloudml.org/,
configure it, and run it), and constraints. Artefact types may
be grouped together and reused in the form of composites.

As depicted in Figure 3, artefact types can expose two
kinds of ports: requirement ports (e.g., the Java servlet re-
quires an artefact type providing the JettyCapability), and
communication ports (e.g., the Java servlet is accessible on
port 443). Moreover, two kinds of bindings can be specified
between artefacts types: deployment dependencies (e.g., the
Jetty container and the MongoDB database have to be de-
ployed before the Java servlet), and communication channels
(e.g., a Java servlet communicates with another Java servlet
through Hypertext Transfer Protocol Secure (HTTPS) on port
443). These bindings can be annotated with requirements and
constraints.

Currently, the CPIM can be serialised using two formats,
namely the JavaScript Object Notation (JSON) and the XML
Metadata Interchange (XMI).

Listing 1 shows an excerpt of a CPIM in JSON format.

Artefact A Artefact B

Artefact C

Provided
applicative
capability

Communication
channel

Required
applicative
capability

Provided
deployment
capability

Required
deployment
capability

Dependency

Resources
(binaries, scripts, etc.)

Figure 3. The ports and bindings in a CPIM

Listing 1. An excerpt of a CPIM in JSON format
{

"id": "DocsDeployment",
"nodeTypes": [

{
"id": "SmallGNULinux",
"os": "GNULinux",
"compute": [ 2, 4 ],
"memory": [ 2048, 4096 ],
"storage": [ 10240 ],
"location": "eu",
"provides": [

{ "id": "SSHCapability" }
]

}
],
"artefactTypes": [

{
"id": "MongoDB",
"retrieval": "wget http://cloudml.org/services/

mongodb.sh",
"deployment": "sudo mongodb.sh",
"provides": [

{ "id": "MongoDBCapability" }
]

},
{

"id": "Jetty",
"retrieval": "wget http://cloudml.org/services/

jetty.sh",
"deployment": "sudo jetty.sh",
"provides": [

{ "id": "JettyCapability" }
]

},
{

"id": "Docs",
"retrieval": "wget http://cloudml.org/apps/docs.

war; wget http://cloudml.org/apps/
docs_configure.sh; wget http://cloudml.org/
apps/docs_deploy.sh",

"configuration": "sudo docs_configure.sh",
"deployment": "sudo docs_deploy.sh",
"requires": [

{ "id": "JettyCapability" },
{ "id": "MongoDBCapability" }

]
}

]
}

The CPIM is transformed semi-automatically into a CPSM,
which represents a specific provisioning and deployment model
that is dependent on the cloud provider. Hence, similar to the
CPIM, this model considers two main concepts, namely node
instances and artefact instances.

A node instance represents an instance of a virtual machine
on a specific cloud provider (e.g., a virtual machine running
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Figure 4. The models@run-time approach

GNU/Linux on Amazon EC2). An artefact instance represents
an instance of a component of the application on a specific
virtual machine (e.g., an instance of the Java servlet on the
virtual machine above).

Finally, the CPSM is transformed to some text-based input
to the libraries and frameworks presented in Section II, which
will enact the provisioning and deployment of the system.

C. Run-time

At run-time, the CPSM is causally connected to the running
system; i.e., a change in the CPSM is reflected on-demand in
the running system, whereas a change in the running system
is automatically reflected in the CPSM. As mentioned, it has
already been shown that models@run-time facilitate reasoning
about- and dynamic adaptation of running systems [43].

Figure 4 (adapted from [46]) depicts the architecture of the
models@run-time environment. The reasoning system reads
the current CPSM (step 1) and produces a target CPSM (step
2). Then, the model checker validates the target CPSM (step 3).
If the validation is passed, the run-time environment calculates
the difference between the current CPSM and the target CPSM
(step 4). Then, the adaptation system enacts the adaptation
on the parts of the running system which are included in
the difference. Finally, the target CPSM becomes the current
CPSM (step 5).

IV. FUTURE WORK AND CHALLENGES

CloudML is at the early stage of development. However,
we have already identified some challenges that we intend to
address in a future work. In the following, we present some
of these challenges.

Modelling QoS constraints. QoS requirements are the
requirements defining the service-level agreement for a system.
Cloud-app developers and vendors may not always be able to
specify these requirements at design-time in a cloud-agnostic
way; e.g., a cloud-app provider may not be able to specify
the location of the systems without knowing the location of
the consumers. The challenge is to model QoS requirements
at design-time in a cloud-agnostic way and to bind these
requirements to the run-time so that modifying them leads to
the adaptation of the running system.

Enacting adaptation in a timely fashion. The enactment
of an adaptation can be time-consuming, and this has already
been identified as a challenge for adaptive systems [47]. This
is because if the enactment of an adaptation is too time-
consuming, a change in the environment may require another
adaptation while the system is still being adapted. In this case,
the result of the adaptation is a system that needs to be adapted
again. On the one hand, if the enactment of an adaptation is
interrupted every time a change requires another adaptation,
the system may never be adapted. On the other hand, if the
frequency of changes requiring an adaptation is higher than
the frequency of enactments of an adaptation, the system may
fall in a continuous loop of adaptation, also referred to as
oscillation. The challenge is to find the right balance between
length and frequency of enactments of an adaptation, which
can be challenging in cloud-based systems, where adaptation
actions can be particularly time-consuming; e.g., provisioning
a virtual machine can take several minutes.

Handling failure during adaptation. The enactment of
an adaptation may be subject to failures. This is because the
adaptation of multi-cloud systems involves complex actions
that consist of several sub-actions; e.g., provisioning a virtual
machine consists of authenticating with the cloud provider,
finding the right image, and finally provisioning it. The chal-
lenge is to find techniques and methods to prevent and handle
failures.

Location of datacentres. The location of datacentres may
have legal implications for the data stored and processed by
multi-cloud systems, aside from obeying to data protection
laws and regulations; e.g., the data held in a particular region
may be accessed by local authorities without the notification to
the consumer. The challenge is to seamlessly move data from
one region to another without legal consequences.

V. CONCLUSION

In this paper, we provide a classification of the state-of-
the-art of cloud solutions, and explain how MDE techniques
and methods facilitating the specification of provisioning,
deployment, monitoring, and adaptation concerns of multi-
cloud systems at design-time and their enactment at run-time.

The solution outlined in this paper is CloudML, built upon
MDE techniques and methods. The DSML facilitates the spe-
cification of provisioning and deployment concerns of multi-
cloud systems at design-time. Moreover, the models@run-
time environment facilitates reasoning about- and dynamic
adaptation of running systems [43] by providing an abstract
representation of the system causally connected to the running
system. This enables the continuous evolution of the system
with no strict boundaries between design-time and run-time
activities.
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